
Analysis and Modeling of U.S. Army Recruiting
Markets

THESIS

MARCH 2016

Joshua L. McDonald, Major, USA

AFIT-ENC-MS-16-M-117

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. Approved for public release.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENC-MS-16-M-117

ANALYSIS AND MODELING OF U.S. ARMY RECRUITING MARKETS

THESIS

Presented to the Faculty

Department of Mathematics and Statistics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Joshua L. McDonald, B.S.

Major, USA

MARCH 2016

DISTRIBUTION STATEMENT A. Approved for public release.



AFIT-ENC-MS-16-M-117

ANALYSIS AND MODELING OF U.S. ARMY RECRUITING MARKETS

THESIS

Joshua L. McDonald, B.S.
Major, USA

Committee Membership:

Dr. Edward D. White
Chair

Dr. Raymond R. Hill
Member

CPT Christian C. Pardo, USA
Member



AFIT-ENC-MS-16-M-117

Abstract

The United States Army Recruiting Command (USAREC) is charged with finding,

engaging, and ultimately enlisting young Americans for service as Soldiers in the

U.S. Army. USAREC must decide how to allocate monthly enlistment goals, by

aptitude and education level, across its 38 subordinate recruiting battalions in order

to maximize the number of enlistment contracts produced each year. In our research,

we model the production of enlistment contracts as a function of recruiting supply

and demand factors which vary over the recruiting battalion areas of responsibility.

Using county-level data for the period of recruiting year (RY)2010 through RY2013

mapped to recruiting battalion areas, we find that a set of five variables along with

categorical indicators for battalions and quarters of the fiscal year accounts for 70%,

74%, and 81% of the variation in contract production for high-aptitude high school

seniors, high-aptitude high school graduates and all others, respectively. We find

indications that high-aptitude seniors and graduates should be modeled as separate

entities, contrary to current procedure. Finally, our models perform consistently well

against a validation dataset from RY2014, and we ultimately achieve 530%, 119%, and

170% relative increases in respective correlation coefficients over previous comparable

literature.
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For Him Who is perfect in love and in Truth,

and without Whose redemptive power in my life all else is rubbish.
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ANALYSIS AND MODELING OF U.S. ARMY RECRUITING MARKETS

I. Introduction

Since the formal elimination of the draft by Congress in 1973, the U.S. Army

has maintained an All-Volunteer Force (AVF) [3]. Army Recruiters are tasked to

help fill the ranks of the AVF by actively pursuing qualified future Soldiers with the

ultimate goal of generating required enlistments. However, recent emerging trends

present challenges to Army recruiters because the pool of potential Soldiers required

to maintain the AVF appears to be decreasing. For example, only 3 in 10 American

youth aged 17 to 24 years old are eligible for Army service, according to the U.S.

Army Recruiting Command (USAREC) [4]. Increasing obesity, decreasing physical

fitness, and decreasing reading ability are thought to be among prominent factors

affecting decreasing service eligibility. Moreover, increasing attitudes of narcissism

and decreasing propensity toward military service tend to further reduce the available

pool of potential recruits [5]. And in 2015, the Army barely met its total recruiting

goal only after sacrificing roughly two thousand of its Delayed Entry Pool (DEP) for

the Reserve Component (RC) [6]. In light of this challenging environment, Army

recruiting leadership requires increasingly accurate information regarding the market

for its product: enlistment as an Army Soldier.

1.1 Research Purpose and Scope

The purpose of this research is to provide USAREC leadership with focused, rel-

evant, and quantitative insight into its missioning process. The term missioning

encompasses the process whereby Headquarters (HQ) USAREC decides how to dis-
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tribute recruiting quotas to its subordinate units; a mission is the recruiting equivalent

of a sales goal in the private sector. The missioning process results logically as re-

cruiting leaders attempt to answer the question, “How does USAREC distribute its

recruiting missions across the United States in a way that maximizes potential [enlist-

ment] production [4]?” To effectively answer this question, USAREC must undertake

at least two tasks in chronological order. First, USAREC must establish an accurate

relationship between numerous recruiting factors—both within (i.e., demand) and

outside of (i.e., supply) its control—and enlistment production in each geographical

recruiting area. Assuming accurate relationships have been defined, USAREC must

then set goals in a manner that takes advantage of these relationships to produce a

maximum total number of projected enlistment contracts. We focus on the first of

these tasks as it is fundamental to successful execution of the second. Also and for

reasons which we detail in subsequent chapters, enlistment contract modeling efforts

to-date leave considerable room for improvement.

Thus, we formulate our primary research question: To what extent can we accu-

rately express the relationship between enlistment supply and demand factors, and en-

listment contract production? To further focus our scope, we consider Regular Army

(RA) enlistment contracts in the 50 States and the District of Columbia (D.C.).

For added relevance, we ask the primary research question for each of USAREC’s

38 recruiting battalions (i.e., recruiting markets) and three types of RA enlistment

contracts.

By employing several mathematical methods, we ultimately ensure achievement

of our research purpose by providing a quantitative answer to the primary research

question. First, we take advantage of open source data at the county level; through

a novel weighting technique, we use county-to-ZIP Code Tabulation Area (ZCTA)

relationships to map county-level data to each battalion within USAREC. We initially
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suggest a set of 26 candidate variables based on their ability to render complete

situational understanding as defined by the Army’s operational and mission variables

[1]. We then apply ordinary least squares (OLS) mixed stepwise regression—aided

by principal components analysis—to the candidate variables in order to estimate

optimally-fitting, parsimonious models for each recruiting battalion and contract type.

We use recent data from Recruiting Year (RY)2010 through RY 2013 to estimate these

models. Finally, we validate our models by predicting contract production for a span

of data not used in estimation, that of RY2014. In this last step we also create

additional conditions of realism by using forecasts of the predictor variables. At the

conclusion of this step, we achieve our penultimate objective by rendering quantitative

battalion- and contract-specific comparisons of model performance within the context

of an operationally relevant scenario. We now discuss the operationally pertinent

aspects of USAREC’s current missioning process.

1.2 Current USAREC Missioning Procedures

Overview and Terminology.

USAREC’s analysis of recruiting markets and subsequent recruiting goal alloca-

tion decisions are collectively called Market and Mission Analysis (MMA). To conduct

MMA, USAREC defines each recruiting market in terms of elements and segments.

The four market elements are the [7]:

1. Potential Market : the proportion of the general population who show an interest
in the Army, or would if they had better information;

2. Qualified Military Available (QMA) Market : the proportion of the potential
market qualified for Army service and who are not currently serving in the
military;

3. Target Market : males aged 17–24 who have a high school diploma and ≥ 50
(category I thru IIIA) Armed Services Vocational Aptitude Battery (ASVAB)
test score;
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4. Penetrated Market : the proportion of the potential market currently serving in
the Army or who have enlisted and are awaiting basic combat training;

In addition to the market elements, USAREC uses market segments—individuals

grouped by like characteristics—to further describe market conditions in order to

more effectively apply specific recruiting strategies. For purposes of our research, the

market consists of three mutually exclusive segments based on both education level

and aptitude: Graduate Alphas (GA), Senior Alphas (SA), and Others (OTH). The

definitions of these market segments are presented in Table 1 [4, 7].

Table 1. Recruiting Market Segmentation

Segment Abbreviation Education and Aptitude Criteria

Graduate Alpha GA
A high school diploma graduate with ≥ 6 months since graduation,
scoring in Test Score Category (TSC) I-IIIA (i.e, above the 50th percentile)

Senior Alpha SA
A high school senior or diploma graduate within 6 months of graduation,
TSC I-IIIA

Other OTH An individual not meeting the educational or aptitude criteria for GA and SA

As part of the federal budget process, HQ USAREC receives the accession mission:

guidance from Department of the Army (DA) G-1 on exactly how many individuals

must enter the Army during respective months of the fiscal year. The accession mis-

sion is specified by Army component and market segment. Following MMA, the five

USAREC brigades are missioned; that is, they receive their respective portions of the

net contract mission. The net contract mission consists of the accession mission cor-

rected for anticipated breaches of enlistment contracts (known as “DEP-losses”), and

including recommended contract missions for the next subordinate echelon (i.e., bat-

talions). Factors considered in the assignment of the net contract mission include each

battalion’s past production, seasonal future losses, recruiter strengths, and geograph-

ical location with a goal of achieving equity in mission difficulty between battalions

[7]. We now delve briefly into a key aspect of the missioning process which enables

HQ USAREC’s production of annual net contract missions.
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The Recruiting Market Index (RMI).

The station is the lowest echelon to which a mission is formally assigned. We

only model battalion-level missioning since the latter is the lowest echelon for which

missions are generated by HQ USAREC.1 Missioning for each year is currently a two-

step process for HQ USAREC. In step one, each of the roughly 42,000 U.S. ZIP codes

is assessed for potential production via a weighted combination of three factors over

the previous four years: Production of all services, Army production, and the QMA

population. At the conclusion of step one, ZIP code estimates are then weighted by

another factor known as the Recruiting Market Index (RMI). The RMI is a linear

regression conducted for each of USAREC’s 38 battalions. The RMI response is a

ratio of potential production to recruiter strength; a total of six predictor variables

includes unemployment and historical productivity rates, among others [8].

Step two of missioning takes the RMI-weighted missions—which are still at the

ZIP code level—and simply aggregates them to battalion and brigade echelons. In

reality, the second step is slightly more complicated, since the RC mission is calculated

and distributed at the ZIP code level prior to the Active Component (AC) mission.

This intermediate step involves yet another set of weights on factors unique to the RC,

but which is not relevant to the current research goal [8]. At this point we conclude

our review of current missioning procedures.

1.3 Research Organization

We conclude the whole of our introductory material with an overview of the the-

sis layout. In Chapter II, we present a review of previous literature pertaining to

recruiting market analysis. The review is by no means exhaustive, but does make a

1HQ USAREC only mandates brigade (BDE)-level missions. Battalion (BN)-level missions are
formally recommended to each BDE HQ by USAREC, although ultimate authority for setting BN
missions is delegated to each respective BDE HQ as the immediate commanding unit.
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concerted attempt to introduce findings and methodologies representative of research

in this area over the last nearly 30 years; supplementary material is located in Ap-

pendix B. In Chapter III, we introduce and develop the quantitative methodologies

brought to bear on our research question; supplementary material for this chapter is

provided in Appendices C through E. In Chapter IV we formally present our results

and analysis, with supporting material in Appendix F. Finally, in Chapter V we re-

visit the original purpose and scope of the research, providing a concise comparison of

our results with those of previous studies and current practices. We close our thesis

with several recommendations for further study.
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II. Literature Review

2.1 Introduction

The literature regarding enlistment behavior is abundant. We focus our discussion

on studies in three general areas: macroeconomic enlistment models, microeconomic

enlistment models, and choice analysis. In addition, we include a fourth category

for previous research of potential value; we classify this category as simply “other

research.” We note that these broad categorical definitions are not mutually exclusive.

However, some observed distinctions are helpful to negotiate the breadth of material

available. For example, studies of enlistment supply at the macroeconomic level make

use primarily of econometric regression models to estimate the effects of various supply

and demand factors on the quality and quantity of enlistments. In general, these

studies do not provide geographically specific observations or recommendations for

recruiting resource allocation. Studies of enlistment supply at the microeconomic level

extend the methodology of macroeconomic techniques to specific geographic locations

and infer recruit production for areas as small as ZIP codes. The third broad category

builds upon or otherwise employs concepts of discrete choice analysis as discussed by

Ben-Akiva and Lerman [9]. These studies appear to rely more heavily on survey

data and attempt to model behavior of specific recruiting market segments using

multinomial probability models–either in lieu of, or in addition to an econometric

specification. The miscellaneous category includes some qualitative studies and a

goal program to determine optimal enlistment incentive allocation decisions. Table 2

provides a brief overview of the relevant research to be discussed in this chapter.
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Table 2. Summary of Previous Research

Empirical Study Broad Category Methodology(ies)
Unit of Observation

Period Covered Interval Region

Dertouzos (1985) Macroeconomic Econometric (log-linear) 1980–1981 Month Military Entrance
Processing Station (MEPS)

Kilburn & Klerman (1999) Discrete Choice Multinomial logit 1994 – National Educational
Longitudinal Survey (NELS)

Murray & McDonald (1999) Macroeconomic Econometric (linear) FY1983–FY1993 Month Public Use Microdata
Area (PUMA)**

Warner, Simon & Payne (2001) Macroeconomic Econometric FY1988–FY1997 Month County
Dertouzos & Garber (2006) Macroeconomic Linear regression;

Logistic regression
Jan 2001-
Jun 2003

Month Recruiting station

Kleykamp (2006) Macroeconomic Logistic regression FY2002 – County
Dertouzos & Garber (2008) Discrete Choice Logistic regression FY2001–FY2004 Month Recruiting station
Asch, Heaton & Savych (2009) Discrete Choice Econometric FY1998–FY2007 Quarter State
Gibson, Luchman,
Griepentrog & Marsh (2009)

Microeconomic Zero-inflated Poisson regression;
neural network;
principal components analysis

FY2006–FY2008 Year ZIP Code Tabulation
Area (ZCTA)*

Gibson, Hermida, Luchman,
Griepentrog, & Marsh (2011)

Microeconomic Zero-inflated Poisson regression FY2008–FY2009 Year ZIP Code Tabulation
Area (ZCTA)*

*Much of the market data come from state or county-level statistics which are subsequently appended to ZIP codes
**A PUMA is defined by the Census Bureau as a multi-county area

2.2 Macroeconomic Enlistment Supply

In 1985, Dertouzos conducted one of the first formal studies of enlistment supply

to include demand factors (e.g., quotas, recruiter incentives, etc.) [10]. At the time,

there existed little consensus over which factors actually impacted the supply of en-

listments and to what degree; Dertouzos hypothesized that this may have been due

to a previously incomplete formulation of the supply-demand relationship. He noted

that “recruiters do not passively process enlistments; rather, by allocating their time

differently in response to [missions] and to rewards for achieving and exceeding them,

they alter both the quantity and quality of enlistments [10].”

Using data from 33 of 67 Military Entrance Processing Stations (MEPS) and years

1980 and 1981, Dertouzos proposed a regression model having a generally log-linear

form [10]. The dependent variable was the number of high quality contracts (i.e., scor-

ing in the top half of aptitude and having a high school diploma). Independent supply

variables were the number of non high-quality (i.e., “other”) contracts, unemployment

rate, manufacturing wage, and the population of 15–19 year-olds. Independent de-

mand variables included the number of recruiters and the contract missions for the
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dichotomous enlistment quality stratification. Dertouzos accounted for both supply

and demand factors simultaneously via a two-stage least squares (2SLS) estimation;

he also estimated the model using OLS and maximum likelihood estimation (MLE),

respectively, in order to compare results [10].

His results appear to confirm the hypothesis that demand factors have a significant

impact on supply coefficient estimates at the 0.05 significance level. In particular,

Dertouzos found that high-quality recruits would increase by 8.42% if the number

of recruiters increased by 10% (all other factors held constant). This estimate was

obtained from the 2SLS model, and was notably more conservative than either the

OLS or MLE estimates at 9.61% and 11.9% percent, respectively. However, the 2SLS

model was the only one to incorporate the full set of demand factors. Dertouzos also

found high quality contracts to be four times more difficult to obtain than others,

suggesting an explicit trade-off between efforts allocated to different quality categories

[10].

In the early and mid-1990s, following the first Gulf War and dissolution of the So-

viet Union, the U.S. Army experienced a significant reduction in fiscal and manpower

recruiting resources. Failures of some recruiting stations to meet their missions and

widespread reports of lowering propensity further fueled concerns about the future

ability of the Army to meet its recruiting mission. In 1999, Murray and McDonald

studied Fiscal Years (FY)1983–87 and FY1990–93 data to determine whether or not

earlier models should have predicted such trends [11]. They used a linear specification

of an econometric regression model to relate the number of high-quality, non-prior

service contracts to a set of variables representing “youths’ opportunities and the

military’s recruiting efforts.” Their approach was derived loosely from earlier work

by Dertouzos and by Dertouzos, Polich, and Press. Differences from the works of

Dertouzos et al. were [11]:
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� a linear model specification (since the logarithm of a zero-contract region is

undefined), using feasible-generalized least square (FGLS) coefficient estimates;

a logarithmic analysis is also reported, with the coefficients having a high degree

of similarity to the linear specification.

� a differing assumption that the effect of goals on enlistments cannot be fully

captured by the ratio of the latter to the former; therefore, the two variables

are separated.

� the use of Public Use Microdata Areas (PUMAs) as the geographic data com-

ponent; recruiting contracts were not reported by PUMA so they were obtained

by a battalion-to-PUMA crosswalk.

Results of the study were mixed. In general, coefficients were lower in terms of

effect than those reported in earlier studies, although significance was similar. The

authors attribute much of the differences to the use of PUMAs: “the benefits of more

appropriate geographically based measures may have been outweighed by the costs

of greater measurement error [11].”

In 2001 Warner, Simon and Payne evaluated the effect of an expansion in the Navy

College Fund (NCF) on Navy enlistment supply [12]. The Clemson University-based

research team ultimately expanded their study of high-quality enlistment supply to

four Services including the Army, Air Force, Navy, and Marine Corps. They postu-

lated that “understanding the impact of changes in the economy, population, and re-

cruiting programs on the supply of high-quality enlistments is needed to answer policy

questions concerning the expansion of enlistment incentive programs since FY[19]94,

including the NCF program [12].”

Warner et al. used monthly recruiting district (i.e., battalion)-level data, mapped

by to counties in the 48 contiguous states, for each of the services spanning from
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FY1988 to FY1997. They used a two-way fixed effects model (effects across states

and time were assumed to be fixed), applied to panel data. They measured total con-

tracts and total high-quality contracts as dependent variables; independent variables

included socio-economic and demographic factors, incentives, and advertising levels,

each scaled by the total respective population. Data for the independent variables

were compiled from a variety of sources including Military Enlisted Processing Com-

mand (MEPCOM), respective Service databases, the U.S. Census Bureau’s Current

Population Survey (CPS), Department of Defense (DoD) military pay tables, and

the Bureau of Labor Statistics (BLS). The authors calculated unemployment directly

from raw estimates of employed and unemployed per state and month. Advertising

data were obtained from P.E.P. Research, Inc. for expenditures, impressions, medium,

month, county, and Service. Key results of this study are reported in Table 3 [12].

In addition to studying enlistment supply, Warner et al. also addressed propensity

Table 3. Impact of Various Factors on Army Enlistments in Warner et al. (2001)

(Source) Variable
Impact on High-Quality
Enlistments (percent change)

(Demographic) 4 percent decrease in 35+ aged veteran population −15
(Demographic) 11 percent increase in age group 17-21 college attendance −11
(Socio-economic) 10 percent decrease in unemployment −2 to −3.5
(Resource) 10 percent increase in Army recruiter strength 4 to 6
(Resource) 100 percent increase in (i.e., doubling) enlistment bonuses 12
(Resource) 10 percent increase in military pay 4 to 12
(Resource) 10 percent increase in Army advertising impressions 14

trends with data from the DoD’s Youth Attitude Tracking Survey (YATS) over the

years 1985–1998. Their research was consistent with earlier efforts, finding propen-

sity to be “positively and significantly related to parents’ past military service” for all

major demographics at the 0.05 level of significance. However, there remained large

unexplained variations in propensity over time [12].

In 2006, Dertouzos and Garber evaluated numbers and quality of Army enlist-

ments for all months and recruiting stations between FY1998 and June 2003. Data
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from FY1998 through FY2000 were incorporated into a multinomial logistic as well as

a linear model, each with approximately 55 dependent variables reflecting various mar-

ket qualities and recruiter characteristics. For data occurring between January 2001

and June 2003, they used a binary logistic regression model to predict the probability

that a station achieved its high-quality mission. In this model, variables represent-

ing specific recruiter characteristics were replaced by reserve component attributes in

order to investigate inter-component competition at the station level. Their results

indicated the performance of both models to be nearly identical in terms of predictor

significance: recruiter attributes were found to be less significant, in general, than

market and mission factors. Specifically, the authors found that lower levels of re-

cruiter effort were required to enlist quality youth in (listed in decreasing order of

importance) [13]:

� low civilian-wage areas;

� areas where the QMA population is high relative to recruiter personnel strength;

� markets that are largely urban, have high non-Catholic Christian populations,

and relatively low proportions of African-Americans and children living in poverty;

� the months of June, July, September and October (May is the worst);

� areas with high proportions of veterans less than 43 years of age and low pro-

portions of veterans between ages 56 and 65; and

� any region that is not the Mountain region.

Overall, the study found that significantly less effort was required in recruiting

markets where the preceding factors figured prominently. Hence, not all markets re-

quired the same effort levels [13]. Furthermore, assigned recruiting missions should

have, but did not adequately account for such variations in effort [14]. The failure of
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contemporary mission models to incorporate effort levels was a primary motivator of a

follow-up study conducted by the same authors in 2008. In the 2008 study, Detouzos

and Garber expanded their previous model to estimate enlistments as a function of

recruiter effort, while adequately accounting for differences in market conditions [14].

Their primary research goal was to evaluate the utility of recruiting performance met-

rics in use by the Army at the time. Using monthly station-level data covering the

period of FY2001–2004, the authors’ investigation found generally that at interme-

diate levels of mission difficulty, recruiter effort increased as goal difficulty increased.

However, this increase in effort also appeared to have a diminishing marginal return

and may have even decreased in response to missions of extreme difficulty [14].

Dertouzos and Garber also made findings of relevance to individual market quality.

For example, they noted that “market quality [was] an important determinant of

recruiter effort levels [14].” Thus, market quality affects goal difficulty, which in

turn affects effort. More specifically, they found market quality in a station’s area of

responsibility to be dependent on a myriad of factors; notable examples were QMA,

ratios of youth to On Production Regular Army (OPRA) recruiters, demographic

factors, and competition from other Armed Services. Several of these market factors

represented an expansion of the original 55-variable model used in 2006 to a 68-

variable model [14]. Perhaps the most salient outcome of the authors’ 2008 research

was their finding that the three separately missioned categories—GA, SA, and OTH—

responded quite differently between markets [14]. Essentially, they concluded that

any [reliable] metric used to evaluate recruiting performance “require[d] econometric

analysis to estimate the difficulty of enlisting youth of different types in different local

recruiting areas [14].”

Dertouzos and Garber also experimented with different time units of observa-

tion. They found that when the month was used as the time interval, proportions
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of variation in production levels explained (i.e., R2) were only 0.32, 0.10, and 0.27

for GA, SA, and OTH contract types, respectively. This relatively poor performance

was improved by the greatest margin by aggregating the data over a period of six

months; in this case, the proportions of explained variance improved to 0.65 for GA

and OTH, and 0.31 for SA [14]. Unfortunately, the rather important and specific

findings from both the 2006 and 2008 studies are tempered by the authors’ omission

of key statistical significance indicators (e.g., P -values) on the independent variables.

And while we may have some idea of predictive capability based on the given R2

values, Dertouzos and Garber did not use a validation dataset to evaluate this aspect

directly.

In total, the studies of macroeconomic enlistment supply are helpful in describing

the “big picture” of recruiting models. There seems to be some general agreement

between these studies in the significance of a few select factors; unemployment, QMA

population, and veteran population are three that come to the fore. However, the

limits of such studies can also be seen in their limited capacity to predict expected

recruit production for a specific geographical area. Microeconomic enlistment models

attempt to do just that, as we review in the next section.

2.3 Microeconomic Enlistment Supply

In 2011 Gibson et al. predicted accessions for individual ZIP codes for each of the

Armed Services with a ZIP Code Valuation Study (ZCVS) [15]. Gibson et al. utilized

a zero-inflated Poisson regression model developed during a 2009 study effort by DoD

Joint Advertising, Market Research & Studies (JAMRS) [16]. We use the authors’

own language for a brief description of their methodology:

“A zero-inflated Poisson model, unlike a standard Poisson (count) model,
distinguishes between two processes causing an excessive number of ze-
ros. . . [it] estimates two models, a count model and a logistic model, and
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combines them in the prediction of the outcome variable. Predictors are
associated with either model, with count model variables predicting the
number of accessions per ZIP code and logistic model variables predicting
the number of ZIP codes with a count of zero accessions [15].”

A zero-inflated model appears to have some applicability due to the finding of Gibson

et al. that nearly half of all [sampled] ZIP codes yielded zero recruits for a given year

[15]. Additionally, the authors conducted a Vuong test to determine the superiority of

the zero-inflated model over the standard Poisson model; a Vuong test evaluates the

null hypothesis that competing models are equally close to the “true data generating

process” against the alternate hypothesis that at least one model is closer [15, 17].

The authors gathered data from a wide array of government, publicly available,

and proprietary sources. They used data from FY2008 and FY2009 to estimate

accessions for each Service in each ZIP code in addition to evaluating significance of

the independent predictors. Data not already available at the ZIP code (or ZCTA)

level was calculated mostly at the state level and then appended to all ZIP codes

within each respective state. A set of 55 independent variables spanned, generally,

the variable categories defined by [18] but in more detail. However, Gibson et al.

added several distance metrics, such as distances of each ZIP code to the nearest

military installation, recruiting center, and university. Also, it is worth noting that

the response variable in Gibson et al. (2011) was more limited in that it did not

stratify contract qualities [15].

Table 4. Impact of Various Factors on Army Enlistments in Gibson et al. (2011)

(Source) Variable
Impact on Enlistments
(percent change)

(Demographic) 10 percent increase in average age −8.3
(Demographic) 10 percent increase in veteran population proportion 7.1
(Demographic) 10 percent increase in married population 5.5
(Socio-economic) 10 percent increase in property crimes 1.0
(Socio-economic) 10 percent increase in unemployment 1.3
(Qualification) 10 percent increase in English proficiency of multilingual students 0.9
(Resource) 10 percent increase in Army recruiter strength 1.1
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Several Army-specific findings of Gibson et al. (2011) are captured in Table 4. In

addition to Table 4, the West region yielded 37.6% more active duty Army recruits

than did the Midwest and South; the Northeast lagged behind the Midwest and

South by a further 18.5 percent. Every additional employee per business and every

additional American College Test (ACT) score point were associated with 24% and

29.4% increases, respectively, in the odds of a ZIP code yielding zero recruits. Across

the services, the number of recruiters appeared to have the greatest positive effect

on accessions (interestingly, an increase in recruiter strength of any Service except

the Marine Corps appeared to boost Army accessions). A second major factor was

aggregate household income. Finally, a larger high school population—independent

of population density—proved to be a significant predictor [15].

As part of an exploratory analysis, Gibson et al. also identify ZIP codes which

differ significantly between actual and predicted accessions in 2010. Top under-

performing ZIP codes (actual < predicted) are those in El Paso, San Diego, and Los

Angeles. Top over-performers (actual > predicted) are Cumberland County (NC),

Comanche County (OK), and Bell County (TX) [15]. Gibson et al. stopped short of

highlighting, as we now note, that the three latter locations coincide directly with very

large Army installations at Fort (Ft.) Bragg, Ft. Sill, and Ft. Hood, respectively.

Having now examined both macro- and micro-economic approaches, we acknowl-

edge added value of the latter in its geographic specificity. Unfortunately, this en-

hancement appeared to come with a cost of reduced resolution in the response. More-

over, the work of Gibson et al. also lacks the use of a validation dataset. We explore

a third modeling approach relating to individual enlistment decisions. Where macro-

and microeconomic studies have thus far involved the collection of historical data at

various levels of geographical aggregation, the next group of studies takes advantage

of survey data, designed for and gathered from individual respondents.
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2.4 Choice Theory

In 1999, Kilburn and Klerman studied the post-high school decisions of youth, as

indicated by the 1992 and 1994 National Educational Longitudinal Survey (NELS).

Kilburn and Klerman build on earlier decision-oriented based models of Hosek and

Peterson [19, 20]. Hosek and Peterson modeled a dichotomous choice between en-

listing or not enlisting; Kilburn and Klerman expanded this to three choices: enlist,

attend college or work/other. Using 49 variables and a multinomial logit model, Kil-

burn and Klerman confirmed an earlier finding that graduates and seniors responded

to different sets of factors. New findings concluded that a graduate with a parent [cur-

rently in] in the military significantly increased enlistment probability. For seniors,

English as a second language significantly decreased enlistment probability [19].

Kleykamp used a multinomial choice model in 2006 to explore the post-high school

decisions of a 2002 Texas high school graduating cohort [21]. A noted attribute of this

study is its use of a survey sample following September 11, 2001 and the initiation

of military action in Afghanistan. With a final sample size of 2,074 males and 15

independent variables, Kleykamp concluded the following:

� college aspirations increase the odds of choosing the military over work;

� military presence is significantly associated with enlistment among youth; the

interaction of ethnicity and military presence is significant for Hispanic and

other groups, but not African-Americans;

� for a 1 percent increase in the local military employment share, the odds of

civilian employment or going to college are each reduced by 25 percent, relative

to joining the military [21].

In 2008, Rostker et al. surveyed 5,373 new Army recruits at Basic Combat Train-

ing (BCT) and One-Station Unit Training (OSUT) locations [22]. Rostker et al.
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focused on recruits aged 20 and older in order to determine what factors, if any, had

influenced “later” enlistment beyond the period immediately coinciding with high

school graduation. The impetus for the study was given by MEPCOM data which

had indicated the fraction of recruits aged 20 and older increased from 35% of total

recruits in FY1992 to about 56% in FY2008 [22]. Results indicated family influence

to have a strong effect on the decision to join the military, regardless of the recruit’s

age; 83% of those surveyed had a close family Service-member. Furthermore, the

proportion of new recruits with a father or mother in the military was over four times

that of the general U.S. youth population. Also, 36% of older recruits reported there

had been “no jobs at home” and 49% described any available jobs as having been

“dead-end [22].”

Rostker et al. also found older recruits were about twice as likely as younger

recruits to initiate contact with a recruiter, whether by phone or by mail. Older

recruits were about 31% less likely to learn about recruiters from school, even though

55% choose some form of post-secondary education after high school. Thirty-eight

percent indicated they simply “took time off” after high school. Rostker et al. used

linear regression of dichotomous age categorical variables to analyze respective effects

on promotion on retention. Their findings indicated both responses to be higher,

in general, for older recruits than for younger recruits. However, this finding was

sensitive to a specific combination of age and either promotion or retention, although

the middle-range age groups of 22–24 and 25–27 showed the greatest overall increase

in promotion and retention rates) [22].

Asch et al. conducted a 2009 study on enlistment choices of minorities in the

Army and Navy [18]. A primary research question of their study was, “what fac-

tors affect[ed] the enlistment supply of different market segments to the Army. . . and

how [did] these effects differ by market segment [18].” The authors utilized Army
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enlistment data from FY1998 through FY2007 as well as demographic data from the

CPS, in corresponding years. Dependent variables were high-quality contracts for

White, African-American, and Hispanic enlistees, respectively. Asch et al. defined

high-quality as a high-school diploma and an above-average Armed Forces Qualifica-

tion Test (AFQT) score; it is not clear from their research if this definition included

SA contracts, which may or may not possess a high-school diploma according to

current USAREC definitions [7]. Thirteen independent variables captured market,

mission, and demographic factors which parallel those chosen by previous research

[18, 14]. Notable additions included obesity and crime rate, as well as the aggre-

gation of age-specific veteran populations into a single demographic proportion [18].

Recruiting goals were included as a quadratic polynomial term in order to account

for [unobservable] effort as a concave function of difficulty [14].

Table 5. Statistically Significant Results for the Army Enlistment Model of Asch et al.
(2009)

Dependent Variable Black White Hispanic

Log(bonus amount) p < 0.01 p < 0.01 –
Log(recruiters/population) p < 0.01 p < 0.01 p < 0.01
Log(military/civilian pay) – p < 0.01 p < 0.05
% receiving Army College Fund – – p < 0.05
Iraq War Effect p < 0.01 p < 0.01 p < 0.10
Presidential approval rating – – p < 0.01
Log(unemployment rate) – p < 0.01 –
Log(% veteran) – – p < 0.01
Log(% non-citizen) p < 0.10 p < 0.05 –
Log(% obese) – p < 0.10 –
% enrolled in college – p < 0.10 –
Log(crime rate) p < 0.01 p < 0.05 –

The data was further organized by quarter and by state, and modeled using econo-

metric panel data regression. The results are indicated in Table 5. The only indepen-

dent variable not shown in Table 5 is the Montgomery GI Bill (MGIB) benefit; it was

found to be insignificant for all groups. In the table, a “–” indicates insignificance (i.e.,

a P -value greater than 0.10). Table 5 summarizes the conclusion that demographics
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responded differently to market factors [18]. It appears that recruiter-to-population

ratios and the effect of the Iraq war were significant to all three demographics.

At this juncture, we conclude our review of the three major types of studies.

Clearly, there is some overlap between the approaches we refer to as “choice the-

ory” and those of the macro- or microeconomic nature; methodologies of panel data

regression and logistic regression are common to all three categories. We now turn

quickly to a few more studies which are of additional use, but which are best collec-

tively characterized by their differences from each other, as well as from the studies

examined thus far.

2.5 Other Research

In 2001, Henry et al. formulated and implemented a binary integer goal program

to meet USAREC Mission Occupational Specialty (MOS)-specific recruiting goals

subject to budgetary constraints [23]. Their model consisted of approximately 64,000

decision variables indicating which types of enlistment incentives to offer each prospec-

tive MOS. While the study did not explore the impact of market demographics, it did

provide an approach for optimizing recruiting resources, provided appropriate input

probabilities could be established. Additional mention is given to the use of choice

analysis similar to those studies discussed in the previous section [18, 23].

Bicksler and Nolan comprehensively reviewed Joint Service recruiting studies

through 2009 [24]. Several of the studies already detailed in this document con-

stitute significant portions of their source material. One of their unique observations

comes from polling data. In 2009, 82% of the American public had high confidence in

the military as an institution, but this did not necessarily translate into propensity.

For the same poll period (2009), propensity was about 15%, down from 26% in 1989.

The authors of [24] assert that “given the established link between propensity and
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enlistment, this long-term decline in propensity is significant, and presents serious

challenges to today’s military recruiters [24].” They highlight several other studies

which make respective notes of:

� a dramatic projected increase in the Hispanic population, from 20% of youth in

2010 to 38% by 2050;1

� the allocation-breakdown of fiscal recruiting resources for the DoD;2

� the presence of a lag between spending on advertising and incentives and cyclic

fluctuations in enlistments;

� a summary of relative effects of changes in recruiting resources, as indicated by

Table 6; the most effective resource for boosting high-quality recruits—military

pay—is also the most expensive (with a marginal cost of $200,000 per recruit,

based on a 4-year enlistment).

Table 6. Impact of Various Factors on Army Enlistments, Bicksler and Nolan (2009)

(Source) Variable
Impact on Enlistments
(percent change)

(Resource) 10 percent increase in recruiters 4.1 to 4.7
(Resource) 10 percent decrease in recruiters −5.6 to −6.2
(Resource) 10 percent increase in advertising budget −1.0
(Resource) 10 percent increase in bonus amount 0.5 to 1.7
(Resource) 10 percent increase in military pay 7.0 to 11.3
(Market) 10 percent increase in unemployment 2.0 to 4.0
(Market) War in Iraq −12 to −33

Lastly, it is useful to review key points from USAREC’s own doctrine concerning

the importance of recruiting market factors. USAREC Manual 3–03 is the primary

1As a group, Hispanics have been historically predisposed toward military service but are under-
represented by about 3% in the U.S. Military [18, 24].

2In FY2008, 30% of Joint recruiting dollars was allocated to “field recruiters and supporting
manpower.” A further 23% was allocated to functions in direct support of recruiters (automation,
logistics, etc.) with the remaining 19% and 24% dedicated to advertising and incentives, respectively
[24]. Whether or not this distribution is uniform across all services is unclear.
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doctrinal publication which prescribes operating guidance for recruiting brigades and

battalions [7]. The manual cites unnamed studies which have purportedly demon-

strated several trends. First, political factors influence recruiting (e.g., upcoming

national elections may cause youth to postpone an enlistment decision and enlist-

ments are positively correlated with elected officials’ attitudes toward military ser-

vice). Next, the close proximity of active military installations tends to increase

enlistments. Also, recruiting stations of other Joint Services tend to decrease Army

enlistments. It is further stated that unemployment rates and enlistments are posi-

tively correlated. Finally, economically depressed areas have higher enlistment rates

[7].

2.6 Conclusion

We have now reviewed available and pertinent literature on Armed Forces recruit-

ing covering the period from 1985 through 2011. Over that 26-year span, we have

seen commonalities and differences between literature objectives, methods, and re-

sults. Reporting each study’s results in a single table, for the purpose of making broad

comparisons, might seem exceedingly useful. However, we are cautious that differing

conditions and objectives between studies—however subtle—may lead to erroneous

interpretations. As a compromise, in Appendix B we offer a comprehensive list of

independent and dependent variables used in each study we reviewed. Reading down

the variable name column, it is easy to see how apparently identical variables contain

important differences.

We can draw some additional conclusions from prior literature. First, the lit-

erature we reviewed was dominated by econometric methodology. The econometric

studies captured here shared a common objective to describe socioeconomic effects

on recruiting over time. In nearly every study, this was accomplished by some form of
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regression. We acknowledge the utility of regression techniques and propose a similar

methodology in Chapter III.

Second, there appears to be some broad agreement that several factors are cor-

related with recruit production. As examples, we note specifically unemployment,

veteran population, age demographics, recruiter strength, and monetary incentives

(of these, unemployment has generally been found to have less relative importance

than its counterparts). Unfortunately, we cannot conclude exactly how the magnitude

of these factors’ effects changes with geographic location. The different geographies

used in each study make this task difficult; we also recognize that statistics at smaller

geographies may have greater measurement error [11]. On the other hand, we have

reason to think that geography is important; this assertion is based on the total body

of empirical results, as well as the fact that USAREC allocates its recruiting missions

by geographic boundaries in the first place [13, 14]. Unfortunately, a gap has emerged

in the fact that no study contained results which were aggregated or reported accord-

ing to specific recruiting unit boundaries. Therefore, the literature gives us a starting

point for variable selection (see Appendix B) while allowing us to fill a knowledge gap

by characterizing the effects of these variables in regions of operational significance

to USAREC.

Finally, we note that virtually no space in previous research is devoted to spec-

ifying predictive models. By predictive models, we mean a type of model that is

designed to produce forecasts into future time periods. Recruiting—like any private-

sector marketing effort—requires decision-making (i.e., an irrevocable allocation of

resources) in the face of uncertainty [25]. While the studies we reviewed provided

some indication of how variables respond to time, most did not explicitly describe the

response of a variable in “future” time or provide any kind of probabilistic statement

regarding such future behavior. We shall use this observation as a primary motivator
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for our methodology, specifically with regard to validation efforts.

Overall, we have found the body of literature surrounding Armed Forces recruiting

to be fairly substantial and we have chronicled a relatively small portion of that

research here. Nevertheless, we have sought to provide a representative sample that

will inform the subsequent methodology, results, and conclusions of our own study.

It is the methodology of our original efforts to which we now turn.
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III. Methodology

3.1 Introduction

Our analysis involves a wide array of techniques including data gathering, impu-

tation, variance reduction, mixed stepwise regression, and multiple linear regression.

These techniques act in support of one another to form a comprehensive analysis

picture. In this chapter, we describe each technique in a logical order, but our dis-

cussions of analysis and results in Chapter IV will not necessarily conform to this

order.

Thus, we begin in Section 3.2 by providing a doctrinal framework to assist with

our initial data selection. In Section 3.3 we describe each data source in greater detail,

as well as any required data cleaning (e.g., imputation). Here we organize our data

descriptions with the aid of the doctrinal framework initially presented. We conclude

Section 3.3 with a short discussion of the database structure, in preparation for the

main body of our methodology presentation.

Sections 3.4–3.7 discuss in detail the mathematical underpinnings of our analysis.

We begin by discussing a useful variance reduction method, principal components

analysis (PCA), in Section 3.4. In Section 3.5 we introduce OLS regression, our chosen

method for mathematically modeling recruiting contract production. In Section 3.6

we build on the OLS discussion and introduce mixed stepwise regression, which is

useful in obtaining parsimonious models with superior explanatory capability. Finally,

in Section 3.7 we describe a strategy for testing the obtained regression models against

new data to assess their overall utility. We close this final section with a brief summary

that helps guide our transition into the presentation of results, in the next chapter.
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3.2 Data Gathering

Our over-arching goal is to develop an adequate mathematical model which pre-

dicts recruiting production for a unit by looking at observable factors within the unit’s

area of operation. Hence, we must gather two broad sets of variables. The first set

describes what is to be predicted (i.e., dependent variables). We define the dependent

variable initially as some number and type of recruiting contracts. The second set of

variables describes those observable conditions of the recruiting market/mission which

ostensibly affect the outcome of the dependent variable. This second variable set is

independent; that is, we assume these variables to be unaffected by the dependent

variable or by each other.

In gathering our variables, we were immediately confronted by a fundamental diffi-

culty stemming from the cross-sectional nature of the data. Recruiting data provided

by USAREC exists at the battalion level—an aggregation of ZIP codes—and sam-

pled at monthly intervals. However, data describing market conditions within each

battalion is reliably and consistently available only down to the county level, sampled

at annual intervals. Therefore, some way of mapping one entity’s observational units

to the other is required. It appears previous literature has either approximated unit

boundaries to conform to standard political borders, or not addressed the incongru-

ence altogether. These approaches may have been appropriate within the context of

their respective research goals, but are not sufficient to address USAREC’s current

need of market-specific predictive accuracy.

Therefore, we propose the following two-step process as a solution. In Step 1, we

gather annual county-level data (where possible) and subsequently weight this data—

through a series of crosswalks using proportions of the general population—to ZCTAs.

At the conclusion of Step 1, we aggregate the weighted ZCTA data to the recruiting

battalion level. In Step 2, we interpolate monthly values between each of the annual
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battalion data points. Thus, the entire process brings annual county-level data into

conformity with the monthly battalion-level data structure provided by USAREC.

We address the entire procedure in more detail shortly, with supplementary material

provided in Appendices C and E.

Figure 1. The Operational Variables, Army Doctrine Reference Publication 5-0 [1]

As chronicled in Appendix B, our review of previous literature revealed roughly

200 variables thought to characterize recruiting markets. Amidst project time and

resource constraints, amassing this many metrics is infeasible. On the other hand,

we cannot arbitrarily choose variables since doing so may omit potentially important

aspects of recruiting behavior. As a solution, we apply the eight operational vari-

ables, known commonly as “PMESII-PT,” to help focus our data gathering efforts.

We also utilize the five mission variables, known by the pneumonic device “METT-

TC.” Army leaders define the operational and mission variables to increase situational

understanding in full spectrum operations [1]. Though traditionally applied within

a strict military context, we find the operational and mission variables suitable for

describing recruiting conditions within the U.S.; in fact, USAREC cites a form of the

operational variables in its own doctrinal literature [7]. We provide a summary of

each of the main operational variables in Figure 1. Each of the operational variables
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in Figure 1 can be further divided into several sub-variables, for a total of 48 possible

metrics. The operational variables and sub-variables describe salient aspects of mar-

ket conditions, which can also be thought of as recruiting supply factors since they

are mostly external to USAREC’s control.

Likewise, the five doctrinal mission variables—mission, enemy, troops, terrain,

time, civilian considerations—describe conditions of the recruiters themselves. These

can be interpreted as recruiting demand factors, since the recruiters act like salesmen

to generate demand for the Army profession according to specific marketing strategies

employed by USAREC. A complete crosswalk of the operational sub-variables and

mission variables with our selected metrics is given in Figure 2. Our strategy was to

Name z j Definition (Time Unit of Measure and Geography)

Political
Government effectiveness & 

legitimacy
Voter Participation Rate 1 votes cast for President / total adult population (2008 and 2012, County)

Military Military forces Sponsor Share 2 number of Army active duty sponsors  / total active duty military sponsors (2010—2013, Annual, ZIP code)

Economic activity Labor Participation Rate 3 persons in labor force / total working-age population (2010—2014, Annual, County)

Employment status Unemployment Rate 4 employed persons / persons in labor force (2010—2014, Monthly, County)

Education level Cohort HS Graduation Rate 5 graduates from freshman high school class / size of freshman class (2010—2014, Annual, County)

Criminal activity Violent Crimes 6 number of violent crimes (2010—2014, Annual, County)

Obesity 7 number of obese persons / total population (2010—2014, Annual, County)

Illicit Drug Use 8 number of persons using illicit drugs / total population (2010 and 2012, County)

Infrastructure Urban zones Urban Population Rate 9 number of persons in urban zones / total population (2006 and 2013, County)

Propensity 10 number of youth inclined toward military service (2010—2014, Semiannual, Battalion)

QMA Population 11 number of youth aged 17—24, qualified without a waiver (2010—2014, Annual, ZIP Code)

17-24 Population 12 number of youth aged 17—24 (2010—2014, Annual, ZIP Code)

Physical Terrain
Battalion Recruiting Station 

Identifier (RSID)
13 recruiting battalion boundaries (2010—2014, Annual, ZIP Code)

Time Information offset Lag-1 14 number of total contracts produced from previous month (2010—2014, Monthly, Battalion)

Reg. Army GA Mission 15 goal for number of GA contracts (2010—2014, Monthly, Battalion)

Reg. Army SA Mission 16 goal for number of SA contracts (2010—2014, Monthly, Battalion)

Reg. Army OTH Mission 17 goal for number of OTH contracts (2010—2014, Monthly, Battalion)

Reg. Army GA Achieved 18 number of adjusted GA contracts produced (2010—2014, Monthly, Battalion)

Reg. Army SA Achieved 19 number of adjusted SA contracts produced (2010—2014, Monthly, Battalion)

Reg. Army OTH Achieved 20 number of adjusted OTH contracts produced (2010—2014, Monthly, Battalion)

Contract Share 21 number of Army contracts / all DoD contracts (2010—2014, Monthly, Battalion)

Recruiter Share 22 number of Army recruiters / all DoD recruiters (2010—2014, Monthly, Battalion)

Army Recruiters 23 number of Army active and reserve recruiters based on PERSTAT (2010—2014, Monthly, Battalion)

Appointments Made 24 number of appointments scheduled and reported to USAREC (2010—2014, Monthly, Battalion)

Appointments Conducted 25 number of appointments conducted and reported to USAREC (2010—2014, Monthly, Battalion)

Terrain and 

Weather

Time Processing Days 26 number of days to process recruits (2010—2014, Monthly, Battalion)

Civil 

considerations

Variable Type Variable Name Sub-variable Name
Metric

Operational           

(Recruiting Supply)

Economic

Information Intelligence

Basic cultural norms and 

values

Social

See Physical  Operational Variable

See Information-Intelligence Operational Sub-variable

Mission            

(Recruiting Demand)

Troops and 

support available

Enemy (i.e., 

Competitors)

Mission

Figure 2. Variable-to-Metric Crosswalk
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include at least one sub-variable and metric for every operational variable, and to this

end we were successful. However, we were only able to feasibly obtain data metrics

for 11 of the 48 total operational sub-variables. So while our selected data renders a

general situational picture, considerable knowledge gaps remain. In the next section,

we briefly describe each of the metrics in Figure 2. The operational variables required

a majority of the data pre-processing, so we begin there following a short discussion

of notation.

3.3 Data Description

Before discussing the data in detail, we pause to introduce some brief notation

conventions. These will be useful in subsequent sections where we desire brevity

in referencing individual variables. First, we use y to denote dependent variables.

We denote independent variables with x. We use z generically where separate role

distinctions are not necessary. We also use a convention of sub- and super-scripted

indicies to denote additional distinctions of z as required. This convention follows

the general form

z
(k,i)
j,t (1)

where

i ≡ the index of the battalion RSID1; i =1B,1D, . . . ,6N

j ≡ the index of the variable from Figure 22; j = 1, 2, . . . , 33

k ≡ the index of the contract type; k = GA, SA, OTH

t ≡ the index of the the observational unit time; t = 1, 2, . . . , 60

1A complete list of Recruiting Station Identifications (RSIDs) and corresponding geographic
locations is located in Appendix A.

2For reasons that will become apparent in Chapter IV, we will add several variables to the current
maximum index of j = 26 as indicated by Figure 2.
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When a definition applies to all elements of an index, we omit that index for

brevity. However, we do include all relevant indicies when a definition or operation as

individual needs for specificity dictate. Having completed this clerical note, we now

move into specific descriptions of the variable data, beginning with the operational

variables.

Operational Variables.

We collected a majority of our data on operational variables from open sources.

We define an open source as a source which is available to the general public or

to properly credentialed DoD personnel through limited-access portals such as the

Defense Manpower Data Center (DMDC). As previously mentioned, much of our open

source data is at the county level. Because of this, we incur the need for alignment

of county geography with the ZIP code geography used by recruiting battalions.

Our proposed method for this is a population-based weighting of each county-level

datapoint to ZCTAs, followed by aggregation of the resulting ZCTA datapoints to

a battalion-specific value. We use ZCTAs because their boundaries are much more

consistent over time than those of ZIP codes [26]. However, this adds additional

complexity because ZIP codes must, in turn, be “crosswalked” to ZCTAs due to

overlaps. We provide a detailed explanation of our procedure to align ZCTAs and

ZIP codes in Appendix C. Presently, we give the basic mathematical formulation of

our county-to-ZCTA weighting technique, given that we have already cross-walked

ZIP codes to ZCTAs.

Let Zi ⊆ Z be the subset of (m = 1, 2, . . . , 32846) ZCTAs within each unit i

boundary. Let C be the set of (n = 1, 2, . . . , 3141) counties in the United States. Let

C ′i be the set of counties which intersect with a ZCTA in a unit’s area of responsibility

(C ′i ⊆ {C ∩Zi}). We then define a weighted statistic z′, for unit i (scripts j and t are
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omitted since this definition applies to all variables and times) as

z′i =
∑
m∈Zi

∑
n∈C′i

υm(n)zn (2)

where

υm(n) ≡ the proportion of county n population residing in ZCTA m, from the
2010 Census [27, 28]

zn ≡ the available statistic for county n, where |zn| ≥ 1

An example illustration of the complex overlapping nature of battalion and county

boundaries is given in Figure 3. Often the desired value of zi is a rate (e.g., unemploy-

ment), in which case we apply (2) separately to the numerator and the denominator

prior to dividing. In fact, we used (2) only for fractional data. We explored weighting

a raw value such as population, but found that aggregating to unit levels produced a

total value greater than the original. This is likely due to some double-counting in our

formulation of z′i. However, similar over-estimation errors applied to the numerator

and denominator of a single rate are likely to be negligible in the end. The overall

MAPPING COUNTY DATA TO BATTALIONS 

 Issue 1: Battalion boundaries are defined by ZIP codes but there 
is no official data gathered at the ZIP code level 
– County-level data is the lowest practical level of geography 

 Issue 2: There is no direct way to link ZIP codes with counties 
– We can directly link ZIP Code Tabulation Areas (ZCTAs) to counties 
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reasonability of our resulting weighted values further increased our confidence in this

method.

Much of our open source data also required imputation to replace missing values.

Some data arrived incomplete at the county-level, but nearly all required imputation

of monthly values from annual samples. In the latter and most frequent case, we used

a technique known as stochastic mean value imputation. This is a variation of the

mean-value method, but adds a random variable to the mean value to capture added

variability [29]. To illustrate our implementation, let zt and zt+12 be realizations

of a battalion-level statistic at the same month in subsequent years, where the in-

between monthly values of zt+1, zt+2, . . . , zt+11 must be imputed. We obtain the mean

values for all imputed t by subtracting zt from zt+12 and dividing by 12 to obtain the

gradient, δ. Then we have the means µ̂t = zt + δt for t = 1, 2, . . . , 12. The standard

deviation σ̂ is then (12δ)/4 = 3δ since by the empirical rule approximately 95% of

the data lies within ±2σ [30]. At this point we now have the two parameters, µ̂t

and σ̂, which characterize a normal distribution based on sample data. We then use

the computationally straight-forward inverse transform technique to compute random

realizations of this normal distribution for each time t, bearing in mind the lack of

a closed-form inverse solution to the normal distribution necessitates a numerical

computation [31]. We utilized the norminv function of Excel®2010 to perform the

inverse transformations, supplemented with Visual Basic Application (VBA) code

which is given in complete form in Appendix E. For brevity, the basic process is

illustrated in Figure 4.

In cases where data was missing from the original county-level datasets, we fre-

quently used “hot-deck” imputation. Hot deck imputation consists of essentially

imputing a missing value in a given category from an existing observation in a similar

category [29]. We took care to apply this method to areas of geographic similar-
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Figure 4. Illustration of Stochastic Mean Value Imputation

ity (i.e., using a value from Montana to replace missing values from Wyoming, not

Florida). In several cases, the data required use of both the hot-deck method for im-

putation of annual data followed by the stochastic mean value method for imputation

of monthly data. At this point we conclude our discussion of data cleaning techniques

and move forward with descriptions of the individual datasets themselves.

Political Variable Metrics. Previous literature contained such political

metrics as Presidential approval ratings or polls of public opinion on specific policies.

We found these specific metrics to be difficult to locate over consistent time periods

and geography. However, we did locate county-level voting statistics for the Presiden-

tial elections of 2008 and 2012. We refrained from a political party-oriented metric

due to the potential for controversy. However, the voter participation rate in the

general elections seems appropriately neutral to link with the operation sub-variable,

“government effectiveness and legitimacy.” We define the voter participation rate, z1,

as the total votes cast for President divided by the voting age population. The data

sources are The Guardian and the U.S. Census Bureau American Community Survey

(ACS), respectively [32, 33, 34]. This dataset required both hot deck and mean value

imputation, as well as ZCTA-weighting.
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Military Variable Metrics. Previous literature of the microeconomic type

included several metrics to describe the geographic proximity of each market to mil-

itary installations. We were not able to replicate this with a distance metric, but

we suggest an alternative called “Sponsor share” (z2): population of Army Service-

members relative to total DoD Service-members. This is our attempt at expressing

the public’s exposure to military presence in their communities. We obtained the

number of Active Duty Service-members for each major U.S. installation, from 2010

to 2013 [35].3 ZIP codes included with each installation allowed us to forgo ZCTA-

weighting. Hot deck and mean value imputation methods were applied.

Economic Variable Metrics. We include the labor participation rate (z3)

and unemployment rate (z4) as metrics of the economic sub-variables employment sta-

tus and economic activity, respectively. For reference we present our weighted BDE

unemployment rates in Figure 5. The current USAREC missioning model incorpo-

Figure 5. Unemployment Rate Using Weighted County Data (x9) by Brigade RSID,
FY2010–FY2014

rates unemployment as an independent variable. For the number of unemployed we

use county-level, monthly data from the BLS [36]. The labor participation rate was

not available from BLS at the county level, so we obtained this data from the 5-year

3The DMDC officially provides this data by installation on a monthly basis, but our time con-
straints did not allow for appropriate formatting of their online query-generated reports.
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ACS [34]. Additionally, labor force size required stochastic mean value imputation

since it was only available annually. The estimates in Figure 5 are broadly consis-

tent recent levels and trends of decreasing unemployment which, as we mentioned

previously, lends some credence to the geographic weighting technique we employed.

Social Variable Metrics. All four of our social variable datasets were ob-

tained from The County Health Rankings and Roadmaps Program [37]. We selected

the high school graduation rate (z5), number of violent crimes (z6), adult obesity rate

(z7), and the illicit drug use rate (z8) to represent corresponding sub-variables. Pre-

vious literature included several or all of these variables in some form. Since all four

datasets are similar in structure, we discuss them together. The original data was

available at the county and annual intervals for 2010 to 2014. The variables z5, z7, and

z8 required conversion of original percents back to integral population numbers using

an accompanying population. The weighting scheme was then applied to numerator

and population separately, and after dividing we arrived back at the appropriate per-

centage expressions. Hot deck and stochastic mean value imputation methods were

then applied.

Infrastructure Variable Metrics. We use a single metric for infrastruc-

ture, which we define as the “urban population rate” (z9). We define the urban pop-

ulation rate as the percentage of persons living in large central metropolitan counties

down to medium metro counties, relative to the total population. To obtain this

metric, we use the population data from the 5-year ACS and a urban-rural county

classification scheme provided by the Centers for Disease Control and Prevention

(CDC) [38].4 The urban and rural classifications were only provided for 2006 and

4The U.S. Census Bureau only provides an urban-rural classification for counties within Core-
Based Statistical Areas (CBSAs). Since CBSAs exclude less populous areas by definition, the list of
U.S. counties used in the Census Bureau’s urban-rural classification is not collectively exhaustive.
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2013. Thus, we applied the 2006 classification to the 2010, 2011, and 2012 population

data from the ACS, with the 2013 classification being applied to the other two years.

Finally, we applied ZCTA-weighting and stochastic mean value imputation.

Information Variable Metrics. We discuss three metrics that reflect the

information operational variable. We define information within a more specific con-

text of intelligence, meaning the specific knowledge recruiters have about their mar-

kets. We begin by defining a metric called “propensity” (z10). Propensity is the

fraction of “definitely” and “probably” responses of youth in a semi-annual DoD poll

aged 17–24 to the question, “How likely [is it] that you will be serving in the Mili-

tary in the next few years [39]?” USAREC provided this data to us at the battalion

level, so only mean value imputation was required. In this case, we utilized a uniform

distribution of the stated margin of error of ±3% to impute the random realizations,

although this too is a greatly simplifying assumption.5 Two other components of

recruiter intelligence are the QMA population (x11) and the 17–24 population (x12).

These data were provided by USAREC at annual intervals and the ZIP code level, so

only mean value imputation was required. The data is calculated by a private firm,

Woods & Poole Economics. The QMA population conforms to the definition provided

in Chapter I, while the 17–24 population is self-evident. We include these metrics

based on previous literature, as well as their prominence in USAREC’s missioning

decisions.

Physical and Time Variable Metrics. We conclude our description of

operational variables with a brief mention of geographical and time-related aspects.

Aside from the battalion as our geographical unit of measure, we do not include a

5The margin of error in the Youth Poll results from a sample in nine census-based regions, not
the 38 battalion areas. In actuality, the battalion margin of error is likely higher than ±3% but we
use the reported margin in the absence of better information.
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separate metric for terrain. We assume that the battalion is an adequate level of

geography about which inferences can be made regarding homogeneity of the market.

In other words, effects of certain variables over time are likely to be relatively sim-

ilar within each battalion, although they may be quite different between battalions.

This is evident upon visual inspection of a few of the time series variables already

discussed; see Appendix D. Regarding time, we do acknowledge the important role

played by lagged responses in model formulation. Currently, USAREC incorporates

lagged responses over previous years to aid its missioning process [8]. Exactly how

we incorporate lagged response values is the subject of a later section in this chapter.

We now leave the operational (supply-side) realm and turn to a description of our

mission (demand-side) variables.

Mission Variables.

As we have previously mentioned, mission metrics are useful in characterizing

the goals and performance of each recruiting battalion. The mission set of variables

comes primarily from USAREC’s own database. The availability of this data was

a driving factor for how we gathered the operational variables, and we requested

mission data for the period of FY2010 through FY2014 for two reasons. First, in

2010 USAREC began assigning missions to the station level, a change from individual

recruiter missions in prior years. Second, the time constraints of our research would

not have permitted the use of 2015 data. That data would not have become available

until well into our analysis phase. In most cases, USAREC was able to provide

monthly observations for 2010–2014 which—when using time (t) as the observational

unit—results in a sample size (T ) of 60 for each unit. Therefore, we meet an important

requirement for time series data since it is recommended that T ≥ 50 [40].
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Mission Variable Metrics. There are two major components of mission

metrics: the contracts missioned and the contracts achieved. The mission expresses

the goal for how many Enlistment contracts of each types are to be produced by each

unit.6 The “achieved” is the number of contracts actually attained. USAREC only

assigns contract missions to brigades at annual intervals, but each brigade is free to

adjust the missions of its subordinate echelons, and does so on a quarterly basis. We

received monthly unit “adjusted” mission and achieved data for each of the three

categories, resulting in the group of six mission metrics from Table 2.

Enemy (Competition) Variable Metrics. Previous literature has included

metrics which describe competition for the youth market from Sister-service recruiters

and even civilian employers. USAREC obtained for us—from DMDC—annual data

for the numbers of contracts and recruiters in each battalion area, by Service and

component. The current USAREC model indirectly accounts for past performance of

a market with respect to the Army’s share of contracts vs. other Services. We define

contract share (z21) generally as the number of Army contracts divided by the total

number of contracts for all Services, with one main caveat: we include total AC con-

tracts in the numerator and AC + RC contracts for all Services in the denominator,

since AC contracts are in competition with RC contracts, in some sense. Also, we

note importantly that the contract share data does not distinguish between education

and aptitude categories. We define the percent recruiter share (z22) as the number of

Active + Reserve Army Recruiters divided by the total Active + Reserve recruiters

from all Services; we do not separate the Active and Reserve Army components in

this case since a station with both components shares a common mission.

6A contract is not the same as an Enlistment. Unless a contract signee ships immediately to basic
training, he or she is placed in the Delayed Entry Program (DEP) and can decide not to enlist. This
is known as a “DEP-loss,” and is beyond the scope of our research. Suffice it to say that USAREC
must set its contract mission above the required number of accessions (i.e., Enlistments) in order to
account for DEP attrition.
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Troops and Support Variable Metrics. We now address a few metrics

related to the manpower and effort considerations of USAREC. Past studies found

the number of Recruiters to be significant in affecting enlistments. Fortunately, US-

AREC was able to furnish its recruiter strength by month. Therefore, we define

the metric “Army Recruiters” as the number of AC + RC recruiters on-hand (z23).

Two other metrics are also useful: appointments made and appointments conducted.

Upon receipt of the recruiting mission, recruiters schedule and conduct face-to-face

appointments with prospective Enlistees. If a prospective Enlistee wants to continue

pursuing the Army after an appointment is conducted, then he or she undergoes a

series of physical and other eligibility exams before an Enlistment contract can be ex-

ecuted. None of the latter steps can [doctrinally] take place without an appointment;

consequently, USAREC leaders use appointments made and conducted as indicators

of recruiter effort. These metrics were not included in previous literature we reviewed,

but we include it based on previous findings regarding the significance of recruiter

effort as well as input from several recruiting subject matter experts (SMEs).7 We

received this data at the station level and aggregated it to battalion and brigade

echelons, respectively.

Time Variable Metrics. Time plays an inherent role as an independent

variable in our research by virtue of its use as an observational unit in the data cross-

section. However, we also include as our last independent variable one additional

time-related metric—that of processing days (z26)— in the mission variable set be-

cause it has been included in prior versions of USAREC’s current missioning model.

This variable is defined as the number of days which are available to conduct admin-

istrative enlistment processing activities and can generally be thought of as simply

7In addition to personnel in the USAREC headquarters, we interviewed local recruiting personnel
as well as one current and three former recruiting company commanders.
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the number of work days, assuming no over-time. We include z26 at the monthly

unit of observation while USAREC models it at the quarterly interval. In order to

make the simple conversion, we calculated average work days per month, subtract-

ing for appropriate extended weekends and Holidays per standard U.S. Government

observances.

At this point, we have concluded our metric descriptions. Before moving on to a

discussion of our specific mathematical techniques, however, we now present a brief

overview of how we amassed and structured the various metrics just discussed.

Database Structure.

We imported, weighted, and imputed our data in a macro-enabled workbook file

of Microsoft Excel®2010. According to the unique structures and large sizes of our

datasets, we wrote several subroutines in VBA to automate data pre-processing.

In order to stream-line error checking and guard against erroneous data entry we

maintained a separate worksheet for each unit, appending each unit with new data

as it was processed. This structure proved to be well-suited for extraction to JMP®

statistical software. The pseudo-code for our data organization procedure is given

below:

WITH a macro-enabled spreadsheet

FOR EACH Battalion

create worksheet

FOR EACH Variable

IF Variable data == county-level

FOR EACH time unit IN Variable

IF number of counties <> number of observations

impute missing values with hot deck method

END IF

NEXT time unit

align to battalion-level using weighting scheme

IF Variable <> monthly

impute missing months with stochastic mean value method

END IF

ELSE

END IF

store Variable

NEXT Variable

NEXT Battalion

END WITH
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We now depart from the data and move on with a discussion of the quantitative

methods we applied. We begin with variance reduction techniques and continue with

model estimation, variable selection, concluding with model validation.

3.4 Variance Reduction

Our need for variance reduction techniques arises from the likelihood—given our

large number of prospective variables—that there will be correlation between indepen-

dent variables. Hence, we will likely require a means of reducing this inter-dependency

in order to generate adequate mathematical models; we find that the multivariate

technique known as Principal components analysis (PCA) is effective to achieving

this end. PCA extracts p weighted linear combinations—called components—of a

set of p variables, such that (1) each component accounts for a successively smaller

amount of the total variance in the original dataset when placed in decreasing order,

and (2) the components are uncorrelated with (i.e., orthogonal to) each other. The

functional relationship under PCA is expressed by

PC(m) = w(m)1X1 + w(m)2X2 + · · ·+ w(m)pXp (3)

where PC(m) is the mth principal component and X1, X2, . . . , Xp are the original

variables. The w(m)j are weights applied to each original variable to as to maximize

the ratio of variance of PCm to the total variation subject to
∑p

j=1w
2
(m)j = 1, for

m = 1, 2, . . . , p. In analyzing the variance of each ordered p component, we may

reach a point where the cumulative variance of the dataset explained at component

p∗ is satisfactorily high even though p∗ < p. In such a case, we could discard the

remaining p − p∗ components without much loss in the original data’s information.

Therefore, let p∗ be the number of retained principal components which is less than

41



the number of original variables while still accounting for a majority of the total

variance in the original set of variables [41]. This property makes PCA a potentially

useful data reduction technique. The components themselves are not designed for

explicit interpretation other than to explain the majority and relative direction of

variance in the original variables. However, occasional interpretation is possible with

component loadings [42].

To describe component loadings, let R be the correlation matrix of independent

variables X1, X2, . . . , Xp. Then the loading of variable i on component j is given by

wij = ai(j)

√
l(j) (4)

where ai(j) is the ith element of the eigenvector associated with component j and l(j)

is the eigenvalue of component j. Loadings are useful inasmuch as their magnitudes

indicate how much a particular variable is affecting the variance of each component

relative to the other variables. Component scores, denoted by Y, orient the compo-

nent loadings to new orthogonal axes. If obtained from the correlation matrix, the

component scores of the r retained components are given by

Y = AXS (5)

where A is the matrix of eigenvectors of the p∗ retained components and XS is the

standardized data matrix of the same [41]. There are several methods to determine

p∗. We use Horn’s criteria, a continuous curve created by sampling the eigenvalues

from K sets of normally and independently distributed (NID) random variates of

dimension equal to the original dataset, whose correlation structure is characterized

by an identity matrix [41]. We choose K = 1000 by convention [42].

42



3.5 Model Estimation

Ordinary Least Squares.

Our first objective is to find an adequate mathematical model that describes the

effects of a battalion’s market conditions on contract production. We also want this

model to accurately predict future values of contract production. A multiple linear

regression model of the market factors x1, x2, . . . , xk on contract production, y, takes

the form

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (6)

where ε is an error term that is normally and independently distributed with a mean

of zero and constant variance (NID,0, σ2) [43]. The values of β̂j, for j = 1, 2, . . . , k

are the estimated regression coefficients, which express the per unit change in y for

the corresponding xj when all other regressors (i.e., ∀x 6= xj) are held constant. OLS

estimates the values of the regression coefficients so as to minimize the sum of the

squares of the differences between each actual (y) and predicted (ŷ) value pair. This

is equivalent to minimizing the sum of squared errors since (y − ŷ)2 = ε2 [43]. When

the model is given in its estimated form, we use ŷ in place of y and omit ε since

the prediction of a new observation in an adequate model is only dependent on the

estimated regression coefficients.

To obtain the regression coefficient estimates (β̂j), we note that (6) may be re-

written in matrix form as

y = Xβ + ε (7)

from which it can be shown that the least squares estimator of β is

β̂ = (X′X)
−1

X′y (8)
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assuming that X is a N×p matrix with full column rank (i.e., p independent columns).

The form of (8) is known collectively as the system of least squares (LS) equations. We

have introduced matrix notation since it will be helpful in later discussions of model

adequacy, where we note special properties of elements within the least squares equa-

tions. We discuss shortly the method for evaluating the output of the LS equations.

First we pause for a few brief excursions into alternate forms of OLS for second-order

response models, categorical variables, coded units, and centering.

The form of (6) is known as a first-order regression model without interaction. If

non-linearity is detected in the fit of particular regressors, we may correct this issue

by developing a second-order response model of the form

y = β0 +
∑
j

βjxj +
∑
j

βjjx
2
j +

∑
i 6=j

βijxixj + ε (9)

where the second and third summations add second-order quadratic and first-order

interactions, respectively [44].

We estimate the models given by (6) and (9) for a sample size of N observations

using both continuous and categorical variables. Categorical variables can be modeled

together in a single model or, equivalently, by separate models for each category. An

advantage to the former option is the ability to interpret a single set of summary

statistics describing the total fit adequacy across all regions, but in our research we

use both formulations. We now illustrate the use of categorical and continuous factors

within the context of our research by assigning n− 1 indicator variables to denote n

recruiting battalions (categorical variables). An indicator variable xj is binary, with

one of the n categories serving as the “baseline.” A notional example of this is shown

in Table 7 where Battalion A is the baseline and Battalions B and C are two other

categorical assignments.

Table 7 begins with x2 because we have also included x1 as a hypothetical inde-

44



Table 7. Example of Indicator Variables

x2 x3

Battalion A 0 0
Battalion B 1 0
Battalion C 0 1

pendent variable that is continuous and quantitative (applicable to all units), in order

to subsequently illustrate how the two types of variables interact. In the current con-

struct, the basic model is ŷ = β̂0 + β̂1x1. This is actually also the model for Battalion

A since its intercept term is no different than β̂0. This is easier to see if we now add

the indicator for Battalion B:

ŷ = β̂0 + β̂1x1 + β̂2x2

ŷ = β̂0 + β̂1x1 + β̂2(1)

ŷ = (β̂0 + β̂2) + β̂1x1

(10)

In (10), we assume that the slopes of each battalion are equal. However, we can add

additional complexity—perhaps fidelity—by also allowing the slopes of the continuous

coefficients to change. This is accomplished by allowing the indicator to interact with

each continuous term. Consider the following scenario for Battalion C:

ŷ = β̂0 + β̂1x1 + β̂3x3 + β̂13x1x3

ŷ = β̂0 + β̂1x1 + β̂3(1) + β̂13x1(1)

ŷ = (β̂0 + β̂3) + (β̂1 + β̂13)x1

(11)

Now regardless of whether indicator variables are present, it is important to note

that the LS estimates βj are interpreted as the estimated change in y per unit change

in xj, given that xj is in its natural units. While clearly useful from a practical stand-

point, the use of “natural” units renders conclusions about the relative importance of
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one independent variable to another impossible given different units of measure. We

can resolve this problem by standardizing all xj on a (−1, 1) scale. By letting ξj be

the value of the variable j in natural units, we have the following conversion to coded

units, xj:

xj,t =
ξj,t − [(ξjMax + ξjMin)/2]

[(ξjMax − ξjMin)/2]
, for t = 1, 2, . . . , N (12)

In this case, we use b̂j to denote the LS estimates using coded variables. With

scaling equalized between all variables, the magnitudes of each b̂j can be assessed for

relative importance [44]. We must be cautious in our interpretations, however, as the

coefficients are only as good as the sample data from which they are obtained and

may not be valid over the entire range of the independent variables [43].

As a final note on forms of the OLS model, we address the technique of centering.

Centering can be applied to continuous variables in either natural or coded units,

and is often necessary to reduce interdependency caused by ill-conditioning of the

matrix X. Such ill-conditioning is common with polynomial or interaction terms, and

is implemented by replacing the observation xt with an adjustment for its overall

mean, or (xt− x̄). Centering is less interpretable but reduces variance inflation of the

independent variables [43].

Hypothesis Testing.

The model in (6) and (7) is useful if there exists a linear relationship between

the response, y, and the regressors. Thus, we apply a test of statistical significance

to determine if such a relationship may indeed exist. In this test, we evaluate the

null hypothesis (H0) that all regression coefficients are zero against the alternate

hypothesis (H1) that at least one regression coefficient is different from zero. This
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hypothesis test is expressed by [43]

H0 : β1 = β2 = · · · = βk = 0

H1 : βj 6= 0 for at least one j

(13)

The residual sum of squares, SSRes, which was minimized in (6), accounts for the

error in LS estimation. Hence, we also have a regression sum of squares, SSR, which

accounts for the changes in the response being captured by the model. It can also

be shown that each of these terms, when divided by its respective variance (σ2),

follows a χ2-distribution with k and n− k− 1 degrees of freedom for SSR and SSRes,

respectively. Then, by definition of the F -statistic, we have

F0 =
SSR/k

SSRes/(n− k − 1)
(14)

which follows the Fk,n−k−1 distribution under a true null hypothesis [43]. Let α be

the probability of a Type I error, defined as a rejection of the null hypothesis when

the null hypothesis is true. Unless otherwise stated, we set α = 0.05 by convention.

We can then evaluate (13) by comparing the value of F0 with Fα,k,n−k−1. We reject

H0 when F0 > Fα,k,n−k−1, and fail to reject otherwise [43].

In the event that H0 from (13) is rejected, we must subsequently determine which

βj terms are of real value in affecting the response. Each regressor in the model

increases the variance of the predicted response (ŷ), which we would ideally like to

minimize while still achieving predictive capability. Thus, we employ the following

test for any regression coefficient:

H0 : βj = 0

H1 : βj 6= 0

(15)
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The test statistic used to evaluate (15) follows a t-distribution with t ∼ tα/2,n−k−1

given a true H0, and is given by

t0 =
β̂j√
σ̂2Cjj

=
β̂j

se(β̂j)
(16)

where Cjj is the diagonal element of (X′X)−1 corresponding to β̂j and the denominator

is the standard error of the regression coefficient β̂j. The test is rejected when |t0| >

tα/2,n−k−1. A rejection of H0 indicates sufficient statistical evidence—based on sample

data—to conclude that the regressor xj is explaining part of the variation in y. A

failure to reject H0 indicates insufficient statistical evidence to conclude xj is having

an effect on y; this term should be considered for elimination from the model as it

is increasing the variance in the predicted response without adding new information

[43].

In our analysis we use JMP®11 statistical software, which reports P -values for

all hypothesis tests. A P -value indicates the smallest value of α for which the null

hypothesis should be rejected [30]. Thus, it adds information by showing the magni-

tude of evidence in support of a conclusion regarding statistical significance. For this

reason, we also report P -values for hypothesis tests in our analysis.

Model Adequacy.

In this section, we briefly address a few important aspects concerning model ade-

quacy. By adequacy we mean several things, all of which must be addressed for the

model to have value as a stable and reliable analysis platform:

1. General assessment of the model’s fit to the data used in its estimation (or the
model’s fit to a separate validation dataset as discussed in Section 3.7)

2. Conformity to the major assumptions of linearity and the residual terms having
NID ∼ (0, σ2) structure [43]
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3. Analysis of diagnostics for leverage and influence of individual observations

4. Reduction of multi-collinearity between the regressors

We now discuss our methodology for dealing with each adequacy consideration, in

kind.

General Assessment Metrics. The coefficient of determination, R2, is the

ratio of SSR to SST . Thus, it is the percent of the total variation in the data which

is explained by the specified regression model. However, it can be shown that R2 is

artificially inflated by adding non-valuable terms to the model. Therefore we select

an alternative metric for general fit assessment, the adjusted R2:

R2
Adj = 1−

(
n− 1

n− p

)
(1−R2) (17)

where p is the number of independent terms in the model, including the intercept

[43]. This metric is more appropriate for our use since it accounts negatively for the

addition of extraneous terms to the model, and we have a potentially large p with all

possible indicator-continuous variable combinations considered.

We also make use of the “R2-like” statistic known as Prediction R2. This metric

is suitable for our use given that time is our observational unit and that the chief

purpose of our model is to make predictions about future observations. It is defined

as

R2
Pred = 1− PRESS

SST

= 1−
∑n

i=1(yi − ŷ(i))
2

SST

(18)

where PRESS is the prediction sum of squares. The value of PRESS is calculated

from the residuals when observation i is predicted without its use in the dataset
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(denoted by the subscript in parenthesis). Thus, it is a form of data-splitting which

aids in assessment of predictive performance [43]. If the model is a stable predictor,

we expect the values of R2
Adj and R2

Pred to be relatively close to one another. Of

course, this expectation is predicated by an assumption that the underlying process

in the data remains constant between periods. Otherwise, large deviations in both

metrics may be observed.

Residual Analysis. Residual analysis consists mainly of verifying three as-

sumptions about the residuals (ei = yi− ŷi) which relate to normality, independence,

and constancy of variance. Deviations from these assumptions could cause the model

to be unstable and incorrectly estimate the parameters. Therefore, we devote consid-

erable attention to ensuring conformity.

First, the residuals must be normally distributed with a mean of zero. We perform

this check by visual inspection of a histogram and a normal probability plot of the

internally studentized residuals, ri. The advantage of using ri as opposed to the “raw”

ei residuals is that the former accounts for the distance of each observation from the

centroid of the independent variable data cloud. Thus, the ri are less susceptible to

small residual variances that results when remote points pull the regression equation

to themselves [43]. The definition of ri is given by

ri =
ei√

MSRes(1− hii)
(19)

where MSRes = SSRes/n− k− 1 and hii are the diagonal elements of the hat matrix

H = X(X′X)−1X′. It can be shown that hii gives an expression for relative distance

of the ith observation from the center of the data [43]. The additional ease with which

the ri are computed in JMP® makes them a logical choice for residual analysis [29].

Constancy of variance is initially checked by visual inspection of the predicted
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values, ŷi, plotted vs. the ri. Violations of this assumption are indicated by irregular

patterns in the plot, such as a funnel, double-bow, or non-linearity. A violation of

this assumption likely requires a corrective transformation on y and/or the regressors

to stabilize the variance. We use the 95% confidence interval on λ, the parameter

in Box-Cox transformation methods where y′ = yλ [43]. While we clearly need a

selected transformation to stabilize the variance, we also require that it be palatable

to decision-makers. Using a confidence interval on the value of λ gives us flexibility

to choose, say, y′ = y1/2 =
√
y even though the point estimate for λ may be 0.4.

Independence of the residuals is a primary concern in our analysis since we use

time as the observational unit. We use the Durbin-Watson test to check for the

presence of first-order autocorrelation, defined as correlation between errors that are

one time period apart. A first-order autoregressive process is defined as

εt = φεt−1 + at (20)

where εt is the residual obtained from OLS regression in time period t, φ is an au-

tocorrelation parameter that must be estimated with OLS, and at is a NID(0, σ2)

random variable. The estimates of error variance and root mean square error in (20)

are σ̂2
a and σ̂a, respectively; we make use of the latter in our discussion of forecasting

prediction intervals [29]. The Durbin-Watson test evaluates the following hypotheses:

H0 : φ = 0

H1 : φ 6= 0

(21)

Since we estimate the two-tailed alternate hypothesis, the Type I error is 2α; we

choose α = 0.025 to obtain an overall 0.05 Type I error probability. The Durbin-

Watson statistic, d, is used to evaluate (21) for positive autocorrelation; 4− d can be
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simultaneously used for negative autocorrelation with

d =

∑N
t=2(et − et−1)2∑N

t=1 e
2
t

(22)

where N is the total number of observations [29]. The value of d depends on the

X matrix, but can generally be shown to lie between lower- (dL) and upper- (dU)

bounds depending on values of α, p− 1, and N . We use p− 1 to denote the number

of regressors, which is the number of parameters less the intercept. The hypothesis

test then proceeds as follows:

If (d or 4− d) < dL, reject H0

If (d or 4− d) > dU , do not reject H0

If dL ≤ (d or 4− d) ≤ dL, the test is inconclusive

In the event that first-order autocorrelation is present, we add the lag 1 value of the

response (yt−1) as an additional regressor in the model. This is the recommended

strategy before much more complex forecasting techniques become necessary [43].

Leverage and Influence. Both leverage and influential points are observa-

tions that have unusual values in x-space. Leverage points do not affect regression

coefficient estimates but do affect the coefficient standard errors, as well as model

summary statistics like R2. We define a leverage point as any observation for which

hii > 2p/N , or twice the average of the diagonal of H. By contrast, influential points

do affect the regression coefficients because they “pull” the regression model in their

direction. We use Cook’s D > 0.25 as the criteria for determining influence. The

definition of Cook’s D for an observation i is

Di =
r2
i

p

hii
1− hii

, i = 1, 2, . . . , n (23)
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It is possible that both leverage and influence points are the result of incorrect data

entry or collection. However, it is also possible that they are legitimate and warrant

further analysis. We have chosen not to eliminate any observations from our model,

given our limited knowledge of USAREC’s data entry/collection process. Therefore,

our analysis of leverage and influence points is strictly informational, in that we

identify those points warranting further investigation by subject-matter experts.

Multicollinearity. Multicollinearity is the presence of linear or near-linear

dependencies between regressors. When multicollinearity is absent, the regressors

are orthogonal. That is, they are perpendicular to each other in a multi-dimensional

sense. Multicollinearity must be diagnosed and corrected to the greatest extent possi-

ble. Otherwise, estimates of the regression coefficients and their (co-)variances could

be seriously inaccurate. One interesting aspect of the multicollinearity problem is

that it can often be disguised by a seemingly excellent summary statistic (i.e., an R2

close to unity). The presence of multicollinearity alone does not mean that the model

will be a poor predictor, but this is often the case [43].

Given our initial data collection of nearly two dozen variables, we expect some

multicollinearity in the dataset. We might also expect multicollinearity in the event

that polynomial terms are added to a model and are not centered. However, we can

also examine variance inflation factors (VIFs) for each regressor. A VIF is defined for

each j regressor as

V IFj = Cjj = (1−R2
j )
−1, j = 1, 2, . . . , k (24)

where Cjj are the diagonal elements of the covariance matrix C = (X′X)−1, and R2
j

is obtained by regressing xj on the remaining p− 1 regressors. VIFs that are greater

than 10 are generally cause for some corrective action, and there are a few methods for
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dealing with high VIFs. Some methods, such as further data collection, are not feasi-

ble in our case given project time constraints. However, model re-specification is one

method which we are able to apply. We employ two types of model re-specification:

redefining and eliminating variables [43]. The variance reduction techniques given in

Section 3.4 assist in both of these efforts since they reveal the magnitude and direc-

tion of the primary drivers of variance in the dataset. For example, PCA can suggest

a reduced variable set by choosing one variable from each principal component, or by

combining several variables from one component into a single index. In this way, the

problem of multicollinearity is also one of proper variable selection. This provides a

fitting transition to our discussion of mixed stepwise regression.

3.6 Variable Selection

Thus far in our treatment of basic OLS estimation tenets, we have assumed that

the variables in the model are all thought to be important. However, we have a large

pool of possible regressors. As mentioned in our discussion of multicollinearity, some

of these regressors are likely producing effects which can be effectively duplicated

by other regressors. Therefore, we require some judgment as to what the best set

of regressors is, inasmuch as it (1) produces the most stable model with highest

predictive capability and (2) contains as few regressors as possible to reduce the

variance of ŷ. What we have just described is the variable selection problem [43].

We choose the stepwise method as our vehicle for variable selection. Stepwise

selection is one of a few variable selection procedures in which, at each “step,” all

candidate variables are assessed for their values of t0, where t0 is the model-fitting

criteria. The analyst selects critical values of t by setting α and these values are used

as entry and/or exit criteria for each t0. Mixed stepwise regression is a modification of

forward selection. In forward selection, variables are entered in order of highest degree
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to which |t0| < tIN where tIN is set by the analyst. Since the forward-selected model

could grow to be quite large, mixed stepwise regression requires an extra step. This

modification requires variables previously entered into the model be subsequently

re-assessed at each step; if a currently used variable is found to have |t0| > tOUT,

this variable is discarded. The procedure continues until no variables can be added

or discarded. In our application, we set αIN = 0.05 by convention and αOUT =

0.1, making it relatively difficult for inclusions while allowing some leniency prior

to exclusion. This is often recommended as it reflects added emphasis on model

parsimony [43]. We use previously discussed fit metrics R2
Adj, R

2
Pred, and add Mallow’s

Cp which is given by

Cp =
SSRes(p)

σ̂2
− T + 2p (25)

to describe the model fit by stepwise selection. We include Cp for its simple interpre-

tation. It can be shown that desirable values of Cp are small (i.e., in the vicinity of

or less than p) [43].

We have chosen stepwise selection for several reasons. First, it is less computation-

ally demanding given the size of our dataset than an all possible models approach.

Second, it combines the best elements of forward selection and backward selection

procedures (backward elimination begins with all regressors in and eliminates them

based on tOUT [43]. Third, stepwise selection is convenient since we already have

baseline models developed by USAREC. We are able to manually enter the exist-

ing USAREC variables and then let stepwise selection take over with our augmented

variable set. Finally, there is not universal agreement among experts over the best

procedure and none is guaranteed to produce a truly “best” subset of regressors [43].

However, we can use the unique structure of our data to our advantage regarding this

issue. Since the USAREC data is divided by 38 mutually exclusive regions, we may

attempt to fit separate models for each region. Comprehensive analysis of the selected
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models together may help reveal the prominence of certain selected regressors and,

consequently, a universally acceptable subset.

At this point, we have covered the relevant aspects of the model building process.

However, even the best built models—if they cannot achieve their primary purpose of

accurately describing a process—may not useful. Therefore, we now transition to the

final portion of our methodology with a discussion of model validation techniques.

3.7 Model Validation

Data Splitting. The primary purposes of our models are to predict future

data. In that sense, validation can be described as how well the estimated model

performs in the presence of “future data.” Since we are limited by an inability to

augment the database with new observations in real time, we elect to split the existing

data. In data splitting of time series data, we let observations t = 1, 2, . . . , T define the

estimation set. This set is used in the model building processes described in previous

sections. The remaining observations t = T + 1, T + 2, . . . , T + τ define the validation

set. The validation set has no part in estimating model parameters or selecting

variables; it is strictly used to “test” the performance of the model gained from the

estimation set [43]. In our dataset, we let T = 45 and τ = 15 define the estimation

and validation sets, respectively. This split is not arbitrary for two reasons. First,

at least 15 to 20 observations are recommended to gain an adequate assessment of

prediction performance [43]. Second, USAREC begins setting missions a few months

prior to the next full recruiting year. By adding three months to the validation set,

we effectively re-create the decision situation from the headquarters point of view:

USAREC must attempt to predict contract production over an extended planning

horizon using only the data realized by the decision-point, T .
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Validation Metrics. Because our models use time series data, “new” data

inherently means “future” data. Making a prediction about future events is a forecast

and the usual metrics of model fit such as R2
Adj and R2

Pred do not apply since forecast

data are not used to fit the model itself [29]. For this reason, we now introduce several

metrics which are useful specifically for assessing forecasting accuracy. We begin with

two metrics which are scale-dependent; that is, their interpretation depends on the

units in which the forecast is made. The first of these is the Mean Absolute Deviation

(MAD), defined by (26)

MAD =
1

N

T+τ∑
t=T+1

|yt − ŷt| (26)

where yt is the actual response at lead time T + 1, T + 2, . . . , T + τ from origin time

T and ŷt is the predicted value of the same [45]. While it does present a measure

of central tendency for the forecast errors, the MAD lacks information regarding the

spread, or variability of the forecast errors. Therefore, we also use the forecast Mean

Square Error (MSE) and Root Mean Squared Error (RMSE) as measures of variability

in the errors. The RMSE has the added advantage that is interpreted as the standard

deviation of forecast errors (not squared units as with the MSE) [29].

MSE =
1

N

T+τ∑
t=T+1

(yt − ŷt)2

RMSE =
√

MSE

(27)

The MAD and RMSE are useful metrics insofar as they provide contextual under-

standing of forecast errors in the same units of the forecasts. However, in the absence

of scaling by the actual value (yt), neither metric provides an understanding of the

magnitude of forecast error. Thus, it is not possible to compare forecasts between

differing categories or time periods using MAD or (R)MSE. Hence, we also use the

Mean Absolute Percent Error (MAPE). MAPE describes the average accuracy of a
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particular forecast over a period of time, relative to the observed data. The definition

of MAPE is [29]

MAPE = 100% · 1

N

T+τ∑
t=T+1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (28)

where previous definitions of each variable still apply. Thus, we use MAPE to more

effectively compare forecast errors across differing categories (e.g., recruiting regions

and contract types). Finally, we also find the coefficient of determination, R2 to be

useful for at least two reasons. One is its ubiquity throughout regression literature,

thus making it useful for comparisons of our results to both past and future research.

The second reason concerns its relative comparability to the fit metrics of the esti-

mation data, R2
Adj and R2

Pred. A relatively good forecast should have R2 values which

are generally consistent with—even if slightly lower than—the metrics of fit used in

the estimation data. Earlier we defined R2 = SSR/SST but note that this can be

expressed alternately as [45]

R2 = SSR/SST

= 1− SSRes
SST

= 1−

T+τ∑
t=T+1

(yt − ŷt)2

T+τ∑
t=T+1

(yt − ȳ)2

(29)

As a final word of note regarding (26-28), the number of observations N can

be defined in multiple ways when categorical variables are involved, depending on

the level of desired analysis. Thus, when analyzing errors over the entire dataset,

N = τB where τ is the number of time periods and B is the number of categories

(e.g., recruiting battalions). But when forecast errors are evaluated for individual

recruiting battalions, the number of observations is simply N = τ . Note that in
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all cases, we sum over only the time periods in the validation data set. Thus, the

predictions made in (26-28) are separate from the predictions obtained during the

model fitting process.

Prediction Intervals. While MAD, MAPE, etc. are adept at describing

the fit of point predictions to the data, we also would like to provide an indication of

the uncertainty surrounding any given point estimate. Prediction Intervals (PIs) are

appropriate for this task since they specify a probability that a realized future value

will lie between upper and lower bounds. There are competing methods for forming

prediction intervals. What often differentiates these methods are two considerations;

the first of these is the lead time (i.e., the number of periods in the future for which

the forecast is made). We assume a lead time of 1 month since USAREC adjusts its

missions on a monthly basis.8. The second consideration involves whether or not the

inputs are known at the time the prediction is made. If one assumes the inputs to be

known, then the only error present in the prediction of future observations is due to

the model’s mis-specification. For example, for a one-period ahead forecast (t = t+1)

with known inputs, the prediction interval is given by

100(1− α)% PI = ŷt+1 ± zα/2σ̂a t = T, T + 1, T + 2, . . . , T + τ − 1 (30)

where σ̂a is the square root of the NID(0, σ) mean squared error obtained by regressing

εt−1 on εt [29].

In our case, (30) is reasonable given monthly forecasts. However, it does not

account for data unknown at the time of the forecast. Let us assume for a moment

that in any given time period the factor x affects the number of enlistment contracts.

8Actually, USAREC headquarters only adjusts quarterly missions, but subordinate headquarters
are not bound by this constraint and do adjust missions on a monthly basis. We make this assumption
to reflect the additional flexibility given to subordinate echelons
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But for a predicted number of contracts in time period T +1, the value of xT+1 would

have to also be forecast if the prediction for contracts is made in the prior month at

time period T . In such a case, the model now has error from its predictions of both

the response and the independent variable. If we assume model and independent

variable forecast errors to be independent for a one period-ahead forecast, we have a

100%(1− α) PI given by

100(1− α)% PI = ŷt+1 ± zα/2[σ̂2
a + β̂2σ̂2

x]
1/2 t = T, T + 1, T + 2, . . . , T + τ − 1 (31)

where aforementioned definitions apply for zα/2 and σ̂a; β̂
2 is the square of the coeffi-

cient for x obtained from the original OLS model and σ̂2
x is the NID(0, σ2) estimate of

error variance obtained from the first-order autoregressive model of x [29]. However,

the citation provides (31) based on only one forecast independent variable. We there-

fore generalize the form of (31) for multiple regressors xj in the set j = 1, 2, . . . ,m

regressors which must be forecast:

Proof. A well-know property of the variance, V , of a random variable X is that

V [aX + b] = a2V [X] where a and b are constants [46]. Additionally, the variance

of a sum of independent random variables X1, X2, . . . , Xm is simply the sum of their

individual variances such that [46]

V [X1 +X2 + . . .+Xm] = V [X1] + V [X2] + · · ·+ V [Xm].

We let ε denote the random variable associated with forecast error due specifically to

the model form y = β̂0 +
∑
β̂jxj + ε, and let β̂jXj be the random variable associated

with each j = 1, 2, . . . ,m estimated coefficient-forecast regressor combination. Then,

assuming independence between the error of each regressor forecast as well as the

model error assuming known inputs, we have the variance of total forecast error
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given by

V

[
ε+

m∑
j=1

β̂jXj

]
= V [ε] + V [β̂1X1] + V [β̂2X2] + · · ·+ V [β̂mXm]

Note that V [β̂0] = 0 since β̂0 is a constant. Using the aforementioned property of

variance, then, we have

V

[
ε+

m∑
j=1

β̂jXj

]
= V [ε] + β̂2

1V [X1] + β̂2
2V [X2] + · · ·+ β̂2

mV [Xm]

= σ2
a + β̂2

1σ
2
x1

+ β̂2
2σ

2
x2

+ · · ·+ β̂2
mσ

2
xm

Denoting the set of forecast regressors with x̂ and replacing each population variance

with its sample estimate, we can then state the generalized form of (31) as

100(1−α)%PI = ŷt+1± zα/2

σ̂2
a +

∑
xj∈x̂

β̂2
j σ̂

2
xj

1/2

t = T, T + 1, T + 2, . . . , T + τ − 1

(32)

�

To implement the use of (32), we propose a simplest-case method for forecasting

the inputs by the rationale that if the simplest method can be shown to be effective,

more complicated methods may not be necessary. Therefore, we use the estimation

dataset to fit a simple linear regression for each continuous regressor, using time

period as the independent variable. This is a form of smoothing; in fact, it is the

simplest type and is commonly known as a simple trend model with form

xt = TR + εt (33)

where xt is the response, TR = β̂0 + β̂1t is the linear trend component with time as
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the regressor, and εt is the NID(0, σ2) error term [45]. With this form, the estimated

trend line’s extrapolation into the validation set will produce input variable forecasts

(hence our use of x as the response variable). We assume a single set of forecasts

made at the end of the estimation set for all time periods in the validation set to be

suitable as a simplest case method for producing independent variable forecasts.

Now prior to making forecasts, we would ideally analyze all input variable models

for adequacy to the standard assumptions. However, this would be considerably

burdensome in our case since we have over three dozen categorical variables in addition

to time series data. Therefore, we have assumed all battalion input trend models to

be adequate, with single intercept and trend coefficients, respectively, in order to

complete our analysis in a timely fashion. An extreme difference in the widths of

the prediction bands between (30) and (32) may indicate a significant departure from

this assumption, or that of the single forecast origin.

At this juncture, we have explicitly stated our methodology for the analysis and

mathematical modeling of Army Recruiting battalion markets. We can now con-

duct the critical portions of the model building process with the following tools and

techniques:

1. a sound, doctrinal framework from which we gathered pertinent data;

2. a means of reducing the correlation between the large number of variables re-
sulting from (1);

3. iterative regression modeling that can help identify the best subsets of variables
from (1) and (2);

4. procedures for evaluating the adequacy of models obtained from (3);

5. the ability to validate practical effectiveness of the models resulting from (4)

As one might observe from this brief summary, these methods are not used in isolation.

Rather, these quantitative techniques work simultaneously and cumulatively to tell
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a comprehensive story about the data. We now focus our efforts on chronicling this

story in the next chapter.
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IV. Results and Analysis

4.1 Outline

In this chapter, we present the results obtained from applying the methodologies

described in Chapter III. Our flow through the material is guided by a logical order

of events, which corresponds closely to the order in which we performed the analysis.

Overall, our results can be divided into two over-arching parts in which Part I consists

largely of exploratory analysis concerning the appropriate selection of responses and

regressors; Part II then covers the refinement and validation of the regression models

containing the variables obtained in Part I.

Therefore, we begin Part I in Section 4.2 with an investigative analysis of the

current regression model in use at HQ USAREC (i.e., the RMI). We begin here

because the RMI has not been formally analyzed in literature, and also because we

desire a baseline for quantitative comparison of our own models. In Section 4.3

we leave the RMI to discuss initial steps of our original analysis. We start with

PCA on all dependent variable candidates and select the three contract types as

our responses. We then implement an iteration of mixed stepwise regression for each

battalion on each of the three responses. We conclude this section with a discussion of

multicollinearity found among the independent variables during stepwise regression.

Section 4.4 covers our attempts to remedy the multicollinearity of the regressor set

through the application of PCA; in this instance we use PCA to redefine and reduce

the set of regressors in order to achieve greater orthogonality and parsimony. At this

point we propose a redefinition and reduction of the regressor set in order to increase

their orthogonality. We conclude this section and Part I of our analysis by conducting

a second iteration of mixed stepwise regression for a second-order response surface

model containing the refined set of regressors. This iteration is also completed at the
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battalion level for each contract type.

We begin Part II of our analysis in Section 4.5, where we introduce indicator vari-

ables as a means of specifying separate battalion models. We then conduct a final

iteration of mixed stepwise regression for each contract type, including first-order

terms from our reduced variable set and interactions of these terms with battalion

indicator variables. The result is a single model (per response) that can be assessed

for adequacy and fit, while still allowing for the derivation of individual unit models

as discussed in Chapter III. Next, we address the required conditions for model ade-

quacy; we find that transformations of all three responses and the inclusion of lagged

responses are necessary to satisfy conditions of homoskedasticity and independence.

We locate a few potential leverage points but do not find sufficient reason for their

exclusion from the models.

Finally, in Section 4.6 we validate each of the three adequate models estimated over

the course of previous sections. We introduce 15 months of data unused during the

estimation process to test the predictive accuracy of each model, given assumptions

both of known and unknown inputs. For unknown inputs, we find that a simple linear

trend model of each input provides a prediction interval which is close in proximity

to that of known inputs. We conclude this section and the chapter by providing a few

observations on validation performance of individual battalion markets with respect

to each contract type.

As a final word of note: in many of our scatter plots we utilize USAREC’s five-tone

color scheme to differentiate datapoints in each of the five recruiting brigades. Initially

a matter of curiosity to us, this technique proved helpful regarding interpretations of

the data at several junctures. Figure 6 provides the color scheme used along with the

RSIDs of each battalion (a full list of units and headquarters locations is in Appendix

A).
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RSID (Unit Designation)
BDE 1 (1st Brigade)
BDE 3 (2nd Brigade)
BDE 4 (5th Brigade)
BDE 5 (3rd Brigade)
BDE 6 (6th Brigade)

Figure 6. USAREC Boundaries as of the 1st Quarter, Recruiting Year (RY)2015

4.2 RMI Baseline

To establish a baseline for comparing our models, we fit a first-order linear regres-

sion model to the quarterly data provided to us by USAREC. We utilized the form

of the RMI model specified in USAREC’s documentation: the response is GA+SA

contracts achieved per recruiter at the battalion-level; the independent variables are

unemployment rate, propensity, battalion RSID, contracts required per recruiter (i.e.,

mission per recruiter), GA+SA contracts required per recruiter, and total contracts

required per recruiter [4]. The first three independent variables correspond explicitly

to x4, x10, and x13 from Figure 2, respectively. Using the notation from Figure 2, we

define the other variables as follows for all units i and quarters t (scripts i and t are

omitted for brevity):

y1 ≡
z18 + z19

z23

= GA+SA contracts achieved per recruiter (GSA PR)

x27 ≡
z15 + z16 + z17

z23

= total mission per recruiter (Req Vol PR)

x28 ≡
z15 + z16

z23

= GA+SA mission per recruiter (Req GSA PR)

x29 ≡
z18 + z19 + z20

z23

= total contracts achieved per recruiter (Vol PR)

(34)
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Now we can express the form of the current RMI as y1 = f(x4, x10, x13, x27, x28, x29)+

ε. However, this form of the model is problematic because it places x29 in an inde-

pendent role when it is really dependent. Both x29 and y1 are defined by ratios of

contracts achieved, which by definition are realized as a result of the effects of the

other factors during a time period. The RMI already includes quality and total mis-

sions as independent variables, which are appropriate since they are determined at

the beginning of each time period. However, the outcome of contracts achieved can-

not also be included as an input in the same time period; this value is not known at

the outset and is likely dependent upon the independent variables. This can be easily

seen from (34), where the definitions of y1 and x29 are identical save one term in the

numerator.

Our solution to this issue was to fit two RMI models, one excluding and one in-

cluding x29 in the independent variable set. The results of these models are presented

in Figures 7 and 8 for the full and and reduced models, respectively, as well as in

Table 8. In part (a) of Figures 7 and 8 we provide the fit summaries and in parts (b-c)

graphical outputs for a brief residual analysis. Table 8 contains the detailed estimates

for significant regression parameters (incodedunits) at the 0.05 significance level. The

number of observations (N = 608) is the number of battalions (38) multiplied by the

number of quarters, q = 16.

From visual examination and from the fit summary, it is apparent that the full

model (including x29) provides a superior fit to the data. Additionally, both models

appear to satisfy the conditions of normality and constant variance, although some

argument could be made for transformations amidst slight outward-opening funnels

in both part (c). In part (c) we also label values of ri > |2.5| as outliers, assuming

slightly more than 1% of the data assuming normality. While there are only a handful

of outlying residuals in either case, we do note a tendency for these points to occur
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Figure 7. Fit Summary and Residuals (ri) for the RMI, Vol PR (x29) Included

disproportionately in the battalions of 2nd BDE (e.g., BN 3A, 3H, 3J, etc.) and 6th

BDE (e.g., 6H, 6I, etc.). Thus, there may be a unique effect in these particular units

which is not being captured by either model.

In Table 8, we are primarily concerned with the signs and relative magnitudes

of the b̂j’s, as well as the VIFs. We do confirm that both regressions are signifi-

cant as well, since each has at least one b̂j with a P -value < 0.05. The full RMI

model is clearly dominated by the effect of x29, which is twice the magnitude of the

next most significant variable. Following 14 significant intercept shifts for units, the

next two significant terms are the quality mission- and total mission-to-recruiter ra-

tios. However, these terms are highly collinear as indicated by VIFs of 10.76 and

12.21, respectively. Therefore, this model could be mis-specifying the parameter esti-
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(c)

Figure 8. Fit Summary and Residuals (ri) for the RMI, Vol PR (x29) Excluded

mates and under-estimating their standard errors. Regarding signs, we see a positive

correlation between unemployment (x4) and the response, which confirms intuition.

The same is true for quality mission per recruiter, although in this model the total

mission-to-recruiter ratio appears to have a negative effect on quality achieved per

recruiter.

Now we examine the reduced RMI model parameters. When x29 is removed,

unemployment (x4) becomes the predominant main effect; this is obviously a direct

reversal from the first model, although the positive sign is still appropriate. Other

changes include the addition of propensity (x10) as a significant effect and the apparent

non-significance of quality mission per recruiter, which did appear in the full model.

However, both propensity and total mission per recruiter terms have a positive effect

69



Table 8. Parameter Summaries in Coded Units for the RMI with (left) and without
(right) x29, Sorted in Decreasing Levels of Significance to α = 0.05

Term (xj) b̂j se(b̂j) P-value VIF Term (xj) b̂j se(b̂j) P-value VIF

BN 5N (Int.) 0.6386 0.0073 <.0001 BN 5N (Int.) 0.5738 0.0142 <.0001
x29 0.2949 0.0071 <.0001 4.0393 x4 0.1604 0.0121 <.0001 3.7045
BN 3G -0.1480 0.0105 <.0001 2.3798 BN 3G -0.2044 0.0208 <.0001 2.3394
BN 3T -0.1110 0.0097 <.0001 2.0434 BN 3J 0.1862 0.0199 <.0001 2.1445
BN 3H -0.0696 0.0103 <.0001 2.2913 BN 6N -0.1454 0.0195 <.0001 2.0674
BN 1D 0.0615 0.0097 <.0001 2.0589 BN 6F -0.1417 0.0200 <.0001 2.1568
BN 1G -0.0581 0.0096 <.0001 1.9851 BN 3T -0.1268 0.0194 <.0001 2.0402
BN 6H -0.0579 0.0097 <.0001 2.0522 BN 5I -0.1269 0.0196 <.0001 2.0713
BN 1N 0.0529 0.0097 <.0001 2.0262 BN 5A -0.1184 0.0193 <.0001 2.0216
BN 3E -0.0528 0.0102 <.0001 2.2761 BN 4G 0.1151 0.0192 <.0001 2.0040
BN 3D -0.0448 0.0098 <.0001 2.0999 BN 1D 0.1022 0.0194 <.0001 2.0378
BN 1O -0.0431 0.0102 <.0001 2.2384 BN 1G -0.0989 0.0191 <.0001 1.9638
BN 6L 0.0405 0.0096 <.0001 1.9842 BN 3A 0.0972 0.0195 <.0001 2.0656
BN 5J 0.0394 0.0096 <.0001 2.0064 x27 0.0814 0.0190 <.0001 11.3041
BN 6F -0.0382 0.0103 0.0002 2.2931 BN 1K -0.0756 0.0191 <.0001 1.9781
BN 6N -0.0371 0.0101 0.0003 2.2167 BN 1O 0.0640 0.0197 0.0012 2.0926
x28 0.0312 0.0088 0.0005 10.7618 BN 4C 0.0637 0.0195 0.0012 2.0612
x27 -0.0293 0.0099 0.0031 12.2065 BN 1N 0.0600 0.0194 0.002 2.0255
BN 6J 0.0278 0.0096 0.0038 1.9854 BN 3E -0.0595 0.0205 0.0038 2.2755
BN 5A -0.0277 0.0099 0.0053 2.1262 BN 6J 0.0554 0.0191 0.0039 1.9758
BN 4J -0.0276 0.0100 0.0058 2.1568 BN 6L 0.0506 0.0191 0.0085 1.9829
BN 5K 0.0276 0.0104 0.0082 2.3505 x10 0.0257 0.0109 0.0183 2.4092
BN 4K -0.0227 0.0097 0.0199 2.0577 BN 6I -0.0439 0.0207 0.0342 2.3110
BN 6I 0.0233 0.0105 0.0263 2.3685 BN 4J 0.0412 0.0197 0.0368 2.0965
BN 5H 0.0211 0.0095 0.0266 1.9608 BN 1B 0.0408 0.0198 0.0396 2.1182
x4 0.0154 0.0070 0.0277 4.9667 BN 5H 0.0391 0.0190 0.0402 1.9567
BN 1A 0.0207 0.0097 0.0328 2.0288
BN 3N 0.0206 0.0097 0.0332 2.0261
BN 3A -0.0210 0.0102 0.0397 2.2435

on quality achieved per requiter, which does confirm some previous literature as well

as intuition. The VIF for total mission per recruiter is noted; it reflects a collinearity

with a non-significant term not shown in the table. This is still problematic because

although the table is truncated, non-significant terms are still included in the current

RMI formulation.

This issue notwithstanding, our assessment is that the RMI model with x29 re-

moved is a more accurate representation of the true system—albeit with a reduced

level of “fit”—and we proceed in this direction. Now that we have some idea of the

current model’s capabilities and limitations, we turn our attention to alternate spec-

ifications. The remaining sections of this chapter describe our results and analysis to

this end.
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4.3 Response Selection and First Stepwise Iteration

In the previous section, the constraints of estimating a “baseline” model dictated

the use of specific independent and dependent variables. In subsequent portions of

our analysis we had no such constraints and this necessitated our independent selec-

tion of appropriate response(s). This problem also relates to independent variable

selection though to a much lesser extent; we have already discussed our data gath-

ering framework and the stepwise regression procedure itself is a vehicle for suitable

independent variable selection. However, neither of these is of any use if the re-

sponse is not a suitable metric for the object of interest nor readily interpretable.

In light of these considerations, we found the use of GSA PR—from the RMI—to

be somewhat counter-productive. It is not a direct measure of recruiting contracts

because it is scaled by recruiter strength. Also, it is limited in scope in that it only

addresses quality contracts and groups two demographics—high school seniors and

older youth—together when in fact the two could respond differently to different sets

of factors. Previous work which we addressed in Chapter II suggested this possibility.

We were aided in our response selection decision by the application of PCA. Since

candidate responses will never be used as independent and dependent variables to-

gether in the same model, they are suitable for the application of PCA. From Table

2 and the additional definitions need for the RMI, we defined a set of seven can-

didate response variables, y1, y2, . . . , y7. Our rationale was fairly straight-forward:

we included both ratios from the RMI (y1, y2), the raw numbers of each contract

type achieved (y3, y4, y5), the quality contracts achieved (y6)—which is just y1 less

its denominator—and lastly, contract share (y7). The results of our PCA on the

candidate response set is given in Table 9.1

1The results of all our PCA are obtained at the brigade—not battalion—level with N = 300 (5
brigades × 60 observations). A smaller sample size allowed us to reduce the possibility of depen-
dence between observations by aggregating the data at a higher echelon. We utilized the full set of
time observations to expose as much of the data as possible as this forms the major basis of our
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Table 9. PCA Summary for the Initial Response Set

PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7)

Eigenvalues 5.2891 0.9295 0.4940 0.1626 0.1247 0.0002 0.0000
% Variance 0.7556 0.1328 0.0706 0.0232 0.0178 0.0000 0.0000
Cum. % Variance 0.7556 0.8884 0.9589 0.9822 1.0000 1.0000 1.0000
Loadings
y1 (GSA PR) 0.9336 0.0958 -0.2768 0.1493 -0.1422 0.0092 -0.0148
y2 (Vol PR) 0.9752 0.0364 -0.0370 -0.0341 -0.2122 -0.0101 -0.0428
y3 (GA Achieved) 0.8970 -0.3446 -0.2327 -0.0060 0.1498 -0.0019 -0.1105
y4 (SA Achieved) 0.4788 0.8702 0.0754 -0.0001 0.0885 -0.0008 0.0020
y5 (OTH Achieved) 0.9156 -0.0885 0.2510 -0.3000 -0.0271 0.0058 -0.0828
y6 (GA+SA Achieved) 0.9695 0.0003 -0.1810 -0.0054 0.1649 -0.0020 -0.0979
y7 (Contract Share) 0.8088 -0.1876 0.5103 0.2215 0.0345 0.0000 0.0472

The content of Table 9 is quite interesting. The bold-face type indicates the PC(i)

on which yj exerts its maximum loading. The presence of bold-face type in only

the first two columns of the loadings matrix indicates that seven variables are really

measuring only two independent quantities. Additionally, the cumulative variance in

all responses is nearly 90% by the second principal component. Practically speaking,

the variables with maximum loadings on the first principal component, PC(1) are

all highly correlated with each other but not with the sole variable making up the

majority of PC(2). Immediately, we notice the odd variable out is that of SA contracts;

this is a clear indicator that SAs should be modeled as a separate response.

Now we are faced with the choice of a response from PC(1). Since all six variables

are approximately equally loaded, the choice might seem arbitrary. However, we have

already presented our concerns regarding the use of y1 and y2. The same concerns

apply to y7 since it is also a ratio and is not contract type-specific. Using y6 would be

at once redundant to SA and exclusive of OTH. So, we select both y3 and y5 and end

up with three uniformly interpretable, mutually exclusive, and collectively exhaustive

metrics of AC recruiting, given our data.

Having defined appropriate responses, we then moved to an initial iteration of

mixed stepwise regression. By an iteration, we mean one complete round of “stepping”

multicollinearity reduction efforts.
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variables in and out of each model until none has a sufficiently (in)significant t-

ratio to either enter or exit, as discussed in Chapter III. We sought to overcome a

key limitation of stepwise regression—that it is not guaranteed to find a best subset

model—by employing it separately to each battalion and then comparing the overall

frequency of selected variables. This resulted in 38 different models from which to

obtain our frequencies for each of the three responses. We provide the frequencies of

selected variables in Figure 9(a)-(c).
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(b). OTH
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(c). SA

Figure 9. Frequencies of Selected Significant Variables Following First Stepwise Itera-
tion

Sorting the frequencies in decreasing order for each contract type in Figure 9 gives

them the “tornado-like” appearance. We have indicated where each of the cumulative

frequencies exceeds 80% of the total. We use this 80% as a Pareto analysis rule-of-

thumb (we also show in the next section a situation where Horn’s criteria for PCA is

met at around 80% cumulative variance). The magnitudes for GA and OTH are quite

similar, as is the overall appearance and make-up of their top ∼ 80%. The measures

of central tendency on model fits appear to indicate symmetry for all contract types

but are markedly lower for SA than for GA or OTH. At this point we also note that

the magnitudes for the variables in the SA models to be only about two-thirds of GA

or OTH. This suggests an overall difficulty is uniquely present for fitting a SA model
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to the given data.

Subsequent analysis of individual models and coefficients revealed substantial mul-

ticollinearity for all contract types. For this reason, we refrain from giving individual

model parameter estimates or other diagnostics at this stage. Figure 10 demonstrates

the ubiquity of the multicollinearity problem among significant terms. It is difficult

to tell, either from Figure 10 or from analysis of the models themselves, exactly which

terms are collinear with each other. However, the highest densities of large VIFs do

appear to occur in the mission variables and mission-to-recruiter ratios. It is not

surprising that these terms are collinear with each other since they are closely re-

lated. Nonetheless, the multicollinearity problem must be resolved in all models if

the parameter estimates and standard errors are to be precise. In the next section,

we discuss our further investigation into and resolution of multicollinearity among

the independent variables.
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Figure 10. Variance Inflation Factors (VIF) After First Stepwise Iteration
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4.4 Redefinition of Regressors and Second-Order Excursion

Following the first iteration of stepwise regression, we discovered prominent mul-

ticollinearity among the regressors of all contract types. Our feasible options for

correcting this issue amounted to re-defining variables, eliminating some variables, or

a combination of both.2. Before deciding exactly how to proceed, we applied PCA to

the set of independent variables to gain insights regarding their variance structure.

Figure 11 provides the sorted eigenvalues of each component and Horn’s curve; Table

10 provides the data and the loadings matrix for all retained components (i.e., all

components with eigenvalues greater than Horn’s curve).
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Figure 11. PC Eigenvalues and Horn’s Curve for the First Set of Regressors

From Figure 11 and Table 10, the five retained components account for about

79% of the variance in the original 22 variables. The GA and OTH missions, along

with propensity among others, are loaded most heavily on the first component. The

second component consists mostly of several lossely connected demographic factors.

The third component is of particular interest as it contains both the mission ratio

terms but also the recruiter strength and SA mission. The fourth and fifth components

2Collecting additional data and other complex methods such as principal components regression
are also valid approaches to combating multicollinearity [43], but these were beyond our scope.
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Table 10. PCA Summary for the Initial Independent Variable Set

PC(1) PC(2) PC(3) PC(4) PC(5)

Eigenvalue 5.4776 3.8533 3.7221 2.6511 1.6084
% Variance 0.2490 0.1752 0.1692 0.1205 0.0731
Cum. % Variance 0.2490 0.4241 0.5933 0.7138 0.7869
Loadings
x1 (Voter Part. Rate) 0.4724 0.6486 -0.0628 -0.0948 0.2746
x2 (Sponsor Share) 0.5045 0.7153 0.0180 0.0579 -0.0407
x3 (Labor Part. Rate) -0.7619 0.2076 0.2354 -0.3092 0.2346
x4 (Unempl. Rate) -0.0377 -0.4225 -0.6136 -0.0599 0.5270
x5 (HS Grad. Rate) -0.4288 0.5901 0.4573 0.0041 -0.1782
x6 (Violent Crimes) -0.0709 -0.2936 -0.7065 -0.3887 0.0780
x7 (Obesity Rate) 0.5014 0.7327 0.0519 0.1881 -0.0123
x8 (Drug Use Rate) -0.7177 -0.4122 0.0862 0.1361 0.2085
x9 (Urban Pop. Rate) -0.4932 -0.7896 0.0706 -0.0925 -0.2529
x10 (Propensity) 0.6309 -0.4604 -0.2794 0.2299 -0.3635
x11 (QMA Pop.) -0.6595 0.3620 0.2762 -0.4695 0.1842
x12 (17–24 Pop.) -0.7745 0.1379 0.3073 -0.4403 0.0694
x15 (GA Mission) 0.5548 -0.2439 0.2772 -0.4699 0.4496
x16 (SA Mission) 0.2977 -0.1260 0.7181 0.1922 0.1013
x17 (OTH Mission) 0.7237 -0.2960 -0.0005 -0.2013 0.2052
x22 (Recruiter Share) 0.3273 0.1584 -0.2562 -0.6416 -0.0017
x23 (PERSTAT Recruiters) 0.3109 0.2602 -0.5920 -0.5654 0.0165
x24 (Appts. Made) 0.2679 -0.1399 0.3664 -0.7385 -0.3609
x25 (Appts. Cond.) 0.3141 -0.2481 0.3994 -0.5156 -0.5592
x26 (Process. Days) -0.0334 0.0158 0.0654 0.1292 -0.0716
x27 (Req Vol PR) 0.5856 -0.3851 0.6286 -0.0026 0.3038
x28 (Req GSA PR) 0.3848 -0.2956 0.7824 0.0378 0.2950

have relatively light loadings but it is interesting to note that appointments made and

appointments conducted are not under the same component as might be expected.

Only the exact linear combinations for each principal component are orthogonal, but

a judicious choice of variables from among the five retained components should result

in a much reduced set of regressors that are minimally correlated. A prudent selection

of variables will consider the top portions of the tornado charts from Figure 9, as well

as diversification from among the principal components. In other words, we wish to

retain as much original information as possible while minimizing collinearity.

This suggests a strategy of somehow combining variables which load on the same

principal component, if indeed their inclusion is warranted and their redefinition is

interpretable. Common threads from the tornado charts are the inclusion of unem-

ployment rate, propensity, appointments made and conducted, QMA, as well as both

missions and mission-to-recruiter ratios. However, just looking at the first component
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reveals loadings of four of these variables. Of these, we place primary importance on

the missions for GA and OTH due to the reliability of the data, their direct control

by USAREC, and previous findings regarding their relative importance. Therefore,

we should look for another way to express propensity and QMA so that they are not

correlated with the missions. Incidentally, none of the variables loading on PC(2) fig-

ure prominently in the tornado charts although from Chapters I and II, both obesity

and high school graduation rates are thought to play a role in the qualification status

of potential Soldiers. If we can redefine a variable that captures information both

on propensity and qualification of youth to serve, we may be able to place this new

variable in the “vacant” space of the orthogonal second principal component and then

retain that variable for further use.

In light of this idea, we propose a new variable (x33) defined as the number of

17–24 year old youths who are jointly probable—assuming independence—to be in

the potential, target, and QMA markets (PTQMA). We use the definitions of these

respective markets given by USAREC 3-0 to establish the following events:

� P = someone is in the potential market (i.e., propensed); P ≡ x10

� T = someone is in the target market (i.e., high school diploma graduate); T ≡ x5

� Q = someone is qualified (i.e., is physically fit); Q ≡ 1− x7

In reality, our definition of these events amounts to some very broad assumptions;

these metrics are likely far too limited to be considered accurate in any real sense.

For example, the target market doctrinally considers only male graduates with high

aptitudes (we have only represented graduation rate without respect to gender). Ob-

viously, qualification amounts to much more than lack of obesity, although this is all

we can represent. However, our primary purpose is achieved in that we can now retain

information which is independent and has proven to have at least some importance in

a predictive model. Using x12 for the youth population and the events just described,
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we complete our definition of PTQMA as

x33 = x12PTQ

= x12(x10)(x5)(1− x7)

(35)

which is completed for all units and time periods (scripts omitted). We add PTQMA

to the original regressors and re-compute the principal components as given in Figure

12 and Table 11.

Color Map On Correlations

$x
_{

4}
$

$x
_{

30
}$

$x
_{

31
}$

$x
_{

32
}$

$x
_{

33
}$

r

-1

0

1

r

-1

0

1

$x
_{

4}
$

$x
_{

30
}$

$x
_{

31
}$

$x
_{

32
}$

$x
_{

33
}$

 

Components

0 2 4 6 8 10 12 14 16 18 20 22

E
ig

en
va

lu
es

0

1

2

3

4

5

6

Data

Horn's Curve

4x 30x 31x 32x 33x

4x

30x

31x

32x

33x

Components

0 5 10 15 20

E
ig

en
va

lu
es

0

1

2

3

4

5

6

Data

Horn's Curve

Figure 12. PC Eigenvalues and Horn’s Curve for the First Set of Regressors + PTQMA
(x33)

From the second PCA, the new variable x33 is clearly loaded on the second princi-

pal component, while GA and OTH missions remain on the first. Appointments made

and conducted are now (more intuitively) aligned together on the fourth component,

with unemployment the only significant loading on the fifth component. Therefore,

we propose several further redefinitions. First, we create a ratio of appointments con-

ducted to appointments made (x30, C-M Ratio). This combines two elements of the

fourth component and does it in such a way so as to conform to the logical recruiting

sequence. Second, add the GA and OTH missions together to form a single mission

(x31, GA+OTH Msn). These are common elements of the first component but there
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Table 11. PCA Summary for the Initial Independent Variable Set + PTQMA (x33)

PC(1) PC(2) PC(3) PC(4) PC(5)

Eigenvalue 5.5128 4.1851 3.7227 2.6558 1.9398
% Variance 0.2397 0.1820 0.1619 0.1155 0.0843
Cum. % Variance 0.2397 0.4216 0.5835 0.6990 0.7833
Loadings
x1 (Voter Part. Rate) 0.4129 0.7236 -0.0974 -0.0905 -0.2317
x2 (Sponsor Share) 0.4588 0.7160 -0.0227 0.0857 0.1995
x3 (Labor Part. Rate) -0.7789 0.1775 0.2229 -0.3025 -0.0876
x4 (Unempl. Rate) -0.0234 -0.3727 -0.5865 -0.0983 -0.5899
x5 (HS Grad. Rate) -0.4578 0.5183 0.4211 0.0408 0.3632
x6 (Violent Crimes) -0.0497 -0.3171 -0.6883 -0.4013 -0.0862
x7 (Obesity Rate) 0.4457 0.7690 0.0111 0.2069 0.0515
x8 (Drug Use Rate) -0.6945 -0.4229 0.1094 0.1153 -0.2744
x9 (Urban Pop. Rate) -0.4277 -0.8455 0.1137 -0.1051 0.1460
x10 (Propensity) 0.6840 -0.5078 -0.2544 0.2324 0.3201
x11 (QMA Pop.) -0.6923 0.3585 0.2555 -0.4614 -0.0954
x12 (17–24 Pop.) -0.7871 0.1130 0.2986 -0.4340 -0.0119
x15 (GA Mission) 0.5567 -0.1272 0.2929 -0.4931 -0.4036
x16 (SA Mission) 0.3015 -0.0598 0.7245 0.1859 -0.1073
x17 (OTH Mission) 0.7331 -0.1972 0.0183 -0.2235 -0.2657
x22 (Recruiter Share) 0.3152 0.1751 -0.2641 -0.6357 0.0660
x23 (PERSTAT Recruiters) 0.2959 0.2457 -0.6053 -0.5558 0.0807
x24 (Appts. Made) 0.2792 -0.1128 0.3737 -0.7304 0.3220
x25 (Appts. Cond.) 0.3383 -0.2395 0.4121 -0.5050 0.4637
x26 (Process. Days) -0.0322 0.0052 0.0640 0.1325 0.0629
x27 (Req Vol PR) 0.5980 -0.2586 0.6513 -0.0282 -0.3534
x28 (Req GSA PR) 0.3932 -0.1871 0.7993 0.0184 -0.3057
x33 (PTQMA) 0.2259 -0.6351 -0.0145 0.0783 0.5861

is no immediately relevant reason for a ratio. Third, create a ratio of the SA mission

to recruiters (x32, Req SA PR). This last ratio consists of common, relevant elements

of the third component, and the only logical way to combine them is with a ratio.

We provide the explicit definitions of x30 through x32 in equation (36).

x30 ≡
z25

z24

= appointments conducted to made (C-M ratio)

x31 ≡ z15 + z17 = GA+SA mission (GA+OTH Msn)

x32 ≡
z16

z23

= total contracts achieved per recruiter (Req SA PR)

(36)

With this set of variables, we capture the relevant pieces of each of the five prin-

cipal components while minimizing the duplication of information. We discard the

remaining variables either because they were not relevant to the models following the
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first stepwise iteration, or because they are already captured as part of one of our

five retained variables. In Table 12, we provide the correlation matrix, R, for the

five retained regressors. Of the ten off-diagonal (ri,j) elements, seven are less than

|0.2|. We do note that |r4,32| = 0.37 and |r30,33| = 0.41 but these are still both less

than 0.5 and are therefore not overly troublesome. Therefore, we are confident that

the reduced set of five variables—which actually retains information from 12 original

variables—will be adequate to reduce multicollinearity going forward.

Table 12. Correlation Matrix R for the Reduced Set of Independent Variables

x4 x30 x31 x32 x33
x4 (Unempl. Rate) 1 -0.2133 0.1964 -0.3698 -0.0863
x30 (C-M Ratio) 1 -0.1299 0.1995 0.4095
x31 (GA+OTH Msn) 1 0.0732 0.0788
x32 (Req SA PR) symm. 1 0.0772
x33 (PTQMA) 1

As a concluding step to this portion of our research, we completed a second itera-

tion of mixed stepwise regression for the individual unit models. However, this time

we used the 5-regressor set, replete with second-order terms and all possible two-way

interactions. As discussed in Chapter III, this constitutes our attempt to test for

non-linearities and interactions as part of a second-order response surface model. We

had some reason to believe that either x31 or x32 might be non-linear—specifically,

concave down—since these terms can be thought of as measuring recruiter effort as

pointed out in Chapter II. However, our results do not appear to indicate recurring

significance of any non-linear effects as shown in Figure 13.

We have now completed the initial stages of the model-building process. These

were also the most complex, as they required us to build from the ground up. However,

we now have well-defined responses and a parsimonious set of independent variables

that should have adequate predictive power in addition to low collinearity. In the next

section, we discuss our final model specification and adequacy-checking procedures.
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Figure 13. Frequencies of Significant 2nd Order Response Surface Terms Following
Second Stepwise Iteration

4.5 Final Model Specification and Adequacy

From the discussion in Chapter III, a single model with several indicator variables

is equivalent to a different model for each indicator. We make use of this feature here

during our final iteration of stepwise regression for a few reasons. First, it enhances

adequacy-checking by dramatically increasing the sample size. Second, it will be

easier to make an assessment of the model’s overall fit since this will be codified in

a single ANOVA and set of summary statistics. Finally, this type of specification is

likely to be more parsimonious since the differences between battalions may be more

prevalent than differences within each unit over time. If this is the case—as we suspect

based on the relatively low R2 values thus far—then this can be modeled by allowing

intercepts (and slopes) to change between units in a single model. Therefore instead

of fitting a unique model to every single battalion, we allowed for the interaction

of all battalions with each main effect term during the stepwise selection procedure.

This is equivalent to allowing the slopes to change for every battalion. We obtain the

summary statistics for each model in Table 13. Clearly the regressions are significant
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for each contract type.

Table 13. Summary of Fit for the Final Models Selected Following Third Stepwise
Iteration

Response, y(k) R2
Adj R2

Pred P > F0 p N

Reg. Army GA Achieved, y(GA) 0.7368 0.7261 < 0.0001 62 1710
Reg. Army SA Achieved, y(SA) 0.5451 0.5254 < 0.0001 50 1710
Reg. Army OTH Achieved, y(OTH) 0.7926 0.7832 < 0.0001 63 1710

Adequacy.

Given that the RMI baseline models showed some signs of heteroskedasticity, we

first examined the recommended Box-Cox transformations on each y(k) in Figure 14.

For all three contract types, the SSE is minimized in the vicinity of λ = 0.5, which

indicates a square root transformation.
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Figure 14. Box-Cox Transformations for yλ(k)

After applying the transformation y′ =
√
y to correct for non-constant variance,

we then examined the independence of the data using the Durbin-Watson (DW) test.

However, we were not able to use the DW test statistic from JMP® since our data was

divided by categorical variables. Therefore, we performed the DW test manually on

each sequence of observations within every battalion, using original code in MATLAB.

Figure 15 displays values of d and 4−d, the DW test statistics for positive and negative

autocorrelation, respectively. On the left-hand side, we show the test statistics for
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the current transformed model. It is clear that we have several units with some

autocorrelation or inconclusive results in every contract type (using the bounds for

N = 40 or N = 50 is somewhat subjective). On the right side of Figure 15, we modify

the transformed model to include φ
(k)
i , a lag-1 autocorrelation parameter for each i

battalion and each k contract type. By including φ
(k)
i , we have now brought every

unit out of the rejection region for N = 40. This effect is particularly pronounced

for SA contracts. For the scope of this project, we assume an inconclusive result

to be satisfactory. Thus, we will continue to leave the autocorrelation parameters

in the model for all units irrespective of significance; this is an unfortunate added

complexity but is necessary to maintain adequacy assumptions.

0

0.5

1

1.5

2

2.5

3

3.5

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

0

0.5

1

1.5

2

2.5

3

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

0

0.5

1

1.5

2

2.5

3

3.5

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

0

0.5

1

1.5

2

2.5

3

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

0

0.5

1

1.5

2

2.5

3

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

0

0.5

1

1.5

2

2.5

3

d d_L (n = 30) d_U (n = 30) d_L (n = 40)
d_U (n = 40) d_L (n = 50) d_U (n = 50) 4 - d

k = GA 

k = O TH 

k = SA 

( )( ) ( )
, ,    45k k

i t i t iy y N′ = = ( )( ) ( ) ( ) ( )
, , , 1    44k k k k

i t i t i i t iy y y Nφ −′ ′= + =

d 

4 – d 

dU,dL (N = 30) 

dU,dL (N = 40) 

dU,dL (N = 50) 

Reject H0 
(|φ| ≠ 0) 

Fail to 
Reject H0 
(|φ| = 0) 

Test 
Inconclusive 

Figure 15. Result of Tests for Autocorrelation for y
′(k)
i without (left) and with (right)

φ
(k)
i

83



In the case of SA contracts, we also observed evidence that time-dependency was

highly correlated with period of the year. This can easily be seen in the time series

plot of SA production in Appendix D. Given the relatively poor performance of the

SA model thus far, we conducted an excursion by introducing an additional series

of indicators for quarters of the recruiting year. We used quarter 1 as the baseline

(intercept) and allowed these terms to interact with each unit during an additional

iteration of stepwise regression.

Our results indicated all three quarters to have significant effects and the fit of the

SA model was improved dramatically. Table 14 contains the final summaries of fit for

the transformed models with lag-1s and quarter indicator variables for SA contracts.

Comparisons between the values of p, the number of explanatory variables plus the

intercept, in Tables 13 and 14 should be made with care. While for each contract type

k we have added an additional 38 parameters for autocorrelation (and quarters for

SA), we have also removed several non-significant terms which are also not required

by the hereditary rule.

Table 14. Summary of Fit for the Final Transformed, Lag-1 Models with Non-
significant, Non-hereditary Terms Removed

Response, y(k) R2
Adj R2

Pred P > F0 p N

(Reg. Army GA Achieved)1/2 = y′(GA) 0.7402 0.7289 < 0.0001 89 1672
(Reg. Army SA Achieved)1/2 = y′(SA) 0.6983 0.6794 < 0.0001 100 1672
(Reg. Army OTH Achieved)1/2 = y′(OTH) 0.8069 0.7954 < 0.0001 98 1672

In Table 15, we provide a summary of potential leverage and influential points.

The table reflects the special attention we paid to points with large values of hii or

ri. We truncate time column by the convention, mmyy. While the criteria for a

large hat diagonal is straightforward (> 2p/n), what constitutes a large residual is

more subjective. We chose to apply a conservative rule of 5%, or the upper- and

lower- 2.5% of the distribution of ri. We show in bold text intersections of large hat
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diagonals and large internally studentized residuals. There is only one leverage point

(unusual in the input-space) for each contract type, but the lack of any large values

of Di indicates that there do not exist any influential points.

Table 15. Leverage and Influence Data for the Transformed, Lag-1 Models

y′(GA) =
√
y(GA) + φy′ y′(SA) =

√
y(SA) + φy′ y′(OTH) =

√
y(OTH) + φy′

Unit Time ri hii Di Unit Time ri hii Di Unit Time ri hii Di

1A 1006 -1.68 0.11 0.00 1N 1209 2.19 0.13 0.01 1K 1303 -1.67 0.14 0.00
1K 1309 -1.86 0.14 0.01 1N 1210 1.92 0.13 0.01 1K 1305 2.26 0.22 0.01
1O 1012 2.68 0.15 0.01 1O 1106 2.33 0.18 0.01 3N 1009 1.67 0.12 0.00
3A 1010 2.66 0.12 0.01 1O 1204 -1.89 0.13 0.01 3N 1301 2.02 0.14 0.01
3A 1011 1.69 0.15 0.01 1O 1309 -2.54 0.13 0.01 3T 1204 -2.58 0.20 0.02
3A 1012 2.64 0.16 0.01 3J 1307 -1.67 0.15 0.00 5C 1111 3.50 0.33 0.06
3A 1101 -2.12 0.24 0.02 3N 1111 1.95 0.19 0.01 5C 1204 -1.91 0.18 0.01
3A 1105 1.71 0.11 0.00 3N 1208 2.17 0.16 0.01 5I 1305 -1.73 0.14 0.00
3A 1204 -2.08 0.15 0.01 3N 1309 -2.56 0.15 0.01 5I 1307 2.26 0.13 0.01
3D 1105 1.97 0.11 0.01 4C 1208 2.51 0.13 0.01 6K 1101 -1.95 0.12 0.01
5A 1209 -1.90 0.13 0.01 4E 1010 1.81 0.16 0.01 6K 1307 2.12 0.14 0.01
5I 1006 -1.91 0.11 0.00 4J 1209 -2.09 0.33 0.02 6L 1007 -1.76 0.16 0.01
6I 1011 1.74 0.12 0.00 4P 1208 2.25 0.17 0.01 6N 1104 -1.86 0.14 0.01
6I 1012 2.69 0.12 0.01 4P 1305 1.68 0.15 0.00 6N 1308 1.83 0.19 0.01
6J 1008 -2.08 0.16 0.01 4P 1308 1.79 0.13 0.00
6N 1012 1.89 0.11 0.00 4P 1309 -3.86 0.15 0.03

5H 1308 3.19 0.17 0.02
5J 1003 -1.87 0.17 0.01
5J 1010 1.79 0.13 0.00
5J 1309 -2.29 0.14 0.01
6I 1007 -1.65 0.16 0.00
6I 1109 -3.16 0.13 0.01
6K 1208 1.64 0.18 0.01

In fact, for all contract types Dmax remained less that 0.25, well below the rec-

ommended criteria of unity. The bold points are also labeled in the subsequent plots

for identification. We do notice the prominence of certain units such as 3A and 4P,

as well as the trend that potential leverage points for a given unit generally lie close

together in time. This is likely a function of an un-modeled time dependency, al-

though we do not venture any other insight. Since the bold points are few and not

influential, we also do not see a reason to exclude them from the model. However, it

may be prudent in the future for USAREC or other research to verify the conditions

surrounding these data points.

At this point, adequacy checking is complete. In Figure 16(a)-(f), we present the

final normal quantile and predicted plots for the internally studentized residuals. It is
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apparent that the adequacy assumptions for normality and constant variance are sat-

isfied, following transformation of the responses and the inclusion of a lag-1 response.

Pairs (a,b), (c,d) and (e,f) show the plots for GA, SA, and OTH, respectively. Note

that with the brigade color scheme applied to each plot, for OTH contracts there

is fairly clear delineation between the predicted values for the 2nd Brigade and the

1st/3rd Brigades. The predicted OTH contracts for 5th and 6th Brigades appear to

be evenly distributed. Therefore, Figure 16f would appear to suggest that a majority

of the predicted non high-quality contracts originate in the southeast region of 2nd

Brigade. This distinction appears to be less prominent for GA and SAs, suggesting

those contract types are predicted to be more evenly dispersed between regions.

Model Forms.

Now that we have completed adequacy checking, we are able to make inferences

regarding the coefficients. Therefore, we conclude this section with a presentation of

the adequate model coefficients and offer several interpretations of the final model

forms. We begin with Tables 16 and 17, which contain the coded coefficients for the

main model parameters of each contract type. We begin with the coded coefficients

since they are useful for comparisons of relative importance between the terms. First,

we note that all VIFs are well below 10 as is recommended [43]. Also, we see that

all main effect terms are significant with one exception each for OTH and SA (these

two terms remain in the models due to significant interactions with unit indicators,

which are not shown here but addressed in following discussion).

For GA and OTH, the total mission of these two combined categories has about

three times the positive impact on contract production than does unemployment.

This is broadly consistent with previous findings. Increasing the SA mission per

recruiter appears to decrease GA and OTH contracts, although this effect is only
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Figure 16. Final Quantile Plots and Residual (ri) Plots of the Adequate Models

87



Table 16. Main Effect Coefficients in Coded Units for y
′(k)
t =

√
y
(k)
t + φ(k)y

′(k)
t−1

k = GA k = OTH

xj b
(k)
j se(·) t0 P > |t0| VIF b

(k)
j se(·) t0 P > |t0| VIF

Intercept 9.1169 0.1092 83.49 0.0001 8.3089 0.1020 81.48 0.0001
x4 (Unemp. Rate) 1.2023 0.1310 9.18 0.0001 4.11 0.7719 0.1403 5.50 0.0001 6.19
x30 (C-M Ratio) 0.2043 0.1012 2.02 0.0438 1.98 −0.2830 0.0941 −3.01 0.0027 2.28
x31 (GA+OTH Msn) 3.0943 0.1232 25.12 0.0001 3.61 2.5464 0.1135 22.44 0.0001 3.63
x32 (Req SA PR) −0.7111 0.1177 −6.04 0.0001 2.39 −0.0962 0.1086 −0.89 0.3761 2.41
x33 (PTQMA) 0.8835 0.1531 5.77 0.0001 4.77 0.3672 0.1424 2.58 0.0100 4.40

Table 17. Main Effect Coefficients in Coded Units for y
′(SA)
t =

√
y
(SA)
t + φ(SA)y

′(SA)
t−1

xj b
(SA)
j se(·) t0 P > |t0| VIF

Intercept 4.0833 0.1119 36.4900 0.0001
x4 (Unemp. Rate) −0.5137 0.1093 −4.70 0.0001 3.74
x30 (C-M Ratio) 0.0934 0.0898 1.0400 0.2981 1.96
x31 (GA+OTH Msn) 1.3000 0.0845 15.38 0.0001 2.15
x33 (PTQMA) 0.0888 0.1304 0.68 0.4958 4.50
QTR2 0.3167 0.0470 6.74 0.0001 1.67
QTR3 0.8169 0.0482 16.96 0.0001 1.59
QTR4 −0.3661 0.0499 −7.34 0.0001 1.62

statistically significant as a main effect for GA. This suggests a palpable trade-off for

recruiters between pursuing GA and SA contracts. However, the largest enhancer of

SA contracts is also apparently the GA+OTH mission which suggests that recruiters

may be more likely to convert a SA mission into a GA contract than vise-versa. We

wonder if this is due to recruiter perception about the lack of a SA market, or a hidden

organizational incentive. Finally, we observe that the C-M Ratio has a negative effect

for OTH contracts while for GA it is positive. While merely speculative, we might

possibly attribute this to a competition for conducted appointments between GA

and OTH. In such a scenario, an increased C-M ratio might decrease production

of OTH contracts if indeed the increased ratio occurs as a result of conducting more

appointments with GA prospects than with OTHs. This is plausible given USAREC’s

emphasis in recruiting quality contracts.

Now regarding the SA model: interestingly, the Req SA PR term is not significant

and not involved in any interactions in the SA model. This seems counter-intuitive,
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but may very well be explained by the high degree of significance shown by the

quarter indicators. We must conclude based on the sample data that the SA mission-

to-recruiter ratio does not affect SA contracts. In other words, the regularity of the

cyclical fluctuations in achieved SA contracts may overwhelm any effect attributed to

the mission per recruiter ratio. In any case, another counter-intuitive finding for the

SA model is that unemployment appears to decrease the number of SA contracts (the

opposite is true for GA and OTH). This is quite puzzling in light of previous findings

regarding the positive correlation of unemployment with SA contract production.

However, we also note the sensitivity of time to changes in behavior and acknowledge

that this may be a factor. We can only speculate, but offer that perhaps the current

generation of senior youth is less driven to pursue an Army career if—being more

susceptible to peer pressure than their older counterparts—they are influenced by less

productive behavior in their local area. A more plausible explanation can possibly be

found by comparing the two time series directly, whereupon one finds that cyclical

lows in SA production correspond almost exactly with seasonal highs in unadjusted

unemployment. We do not speculate whether or not this relationship is coincidental,

except to say that it could provide a sensible explanation for the contrary sign of

unemployment with respect to this specific contract type.

As we have just shown, the coded coefficients are useful to draw interpretive

conclusions. However, the natural coefficients are needed in practice to implement

the model. Therefore, we provide the main effects in natural units in Table 18. The

contents of Figure 18 can be obtained directly from JMP®, as can details on the

individual parameters that are unit-specific. In Figure 17 we provide an example

excerpt of the software output for 3 unit-specific terms out of the 89 total terms

estimated in the GA model.

Unfortunately, the software does not complete the required algebraic operations
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Table 18. Main Effect Coefficients in Natural Units for y
′(k)
t =

√
y
(k)
t + φ(k)y

′(k)
t−1

ξj β̂
(GA)
j β̂

(SA)
j β̂

(OTH)
j

Intercept 2.1978 3.2325 4.8331
ξ4 (Unemp. Rate) 26.4225 −12.7345 15.2018
ξ30 (C-M Ratio) 0.8758 0.5186 −0.9503
ξ31 (GA+OTH Msn) 0.0245 0.0107 0.0200
ξ32 (Req SA PR) −2.0811 n.s. −0.2294
ξ33 (PTQMA) 10.58× 10−6 1.47× 10−6 4.82× 10−6

QTR2 n.s. 0.3442 n.s.
QTR3 n.s. 0.8373 n.s.
QTR4 n.s. −0.3518 n.s.
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BN_3N -1.7720 -0.1024 0.1519 -0.6700 0.5005 2.6346 
Unemployment Rate*BN_3N 20.9050 1.2509 0.5301 2.3600 0.0184 2.6057 
GA Lag1*BN_3N -0.0014 0.1332 0.5548 0.2400 0.8102 8.4011 

Figure 17. JMP® Output Example for Three Terms Specific to Battalion 3N (Tampa)

to combine unit-specific terms and main effects to create individual unit models.

As we discussed in Chapter III, the individual battalion values for each coefficient

may differ, indicating a unit-specific intercept and/or slope coefficient(s). Therefore,

we must manually create individual battalion models and now briefly illustrate our

procedure for accomplishing this. To begin, we write out the full model using Table

18 as

ŷ
(i)
t = 2.20ξ

(i)
0,t + 26.42ξ

(i)
4,t + 0.88ξ

(i)
30,t + 0.02ξ

(i)
31,t − 2.08ξ

(i)
32,t + 1.1E

−6ξ
(i)
33,t (37)

for i = 1B,1D. . .,6N. Once we select i = 3N, we scan the software output for any terms

containing this indicator and find the three terms indicated by Figure 17. Then from

equation (11), these terms—provided they are significant or required for heredity or
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adequacy assumptions—are added to their respective coefficients in (37):

ŷ
(3N)
t = (2.20− 1.77)ξ

(3N)
0,t + (26.42 + 20.91)ξ

(3N)
4,t + 0.88ξ

(3N)
30,t + 0.02ξ

(3N)
31,t

− 2.08ξ
(3N)
32,t + 1.1E

−6ξ
(3N)
33,t + (0.0057− 0.0014)φŷ

(3N)
t−1

= 0.43ξ
(3N)
0,t + 47.33ξ

(3N)
4,t + 0.88ξ

(3N)
30,t + 0.02ξ

(3N)
31,t − 2.08ξ

(3N)
32,t

+ 1.1E
−6ξ

(3N)
33,t + 0.0043φŷ

(3N)
t−1

(38)

In this case not all of the terms changed; this indicates statistical non-significance

of the unit’s slopes for x31, x32, and x33 from the baseline unit, 5N. In Tables F.1,

F.3, and F.2, we give the models for all individual units which include the contents

of Table 18 as well as the intercept shifts and slope changes necessitated by the

significant unit-specific terms. Note that for most units, non-intercept terms tend to

not differ significantly or with any pattern from the baseline. This appears to indicate

that effects of these variables are largely fixed between units. Therefore, it is possible

that differing slopes—in the few cases where they do occur—may be fitting more noise

than signal. This concludes our final section with regards to model construction. We

now move to the closing section of the chapter as we assess the performance of our

models against the validation data set.

4.6 Validation

Having formulated and analyzed a set of adequate models, we now seek to test

their stability—and consequently their utility—using some new data. As mentioned

in Chapter III, we set aside the last 15 months of data for this exact purpose. Now

because our data is cross-sectional with observations taken at each points in time

across multiple categories, we have multiple options for conveying our results. How-

ever, it important to note how the sample size changes depending on our object(s)

of comparison. For example, a single categorical entity (i.e., battalion or USAREC-
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aggregate) over time has sample sizes NE = 44 and NV = 15 for estimation and

validation datasets, respectively; we denote a comparison of this type by the term

echelon. However, a single comparison made between all recruiting battalions over

time has sample sizes NE = 1672 and NV = 570 since time periods must be mul-

tiplied by the number units; we refer to this type as a comprehensive comparison.

When summarizing a group of echelon comparisons we provide the comprehensive

average as a baseline for comparison as opposed to averaging the individual echelon

values; this is an effort to reduce bias that might be introduced from “averaging the

averages.”

We begin our validation analysis at the macro- (HQ USAREC) level and work our

way down to specific contract types and battalions. We start by presenting a single

time series chart for total contract production in Figure 18. The gray line represents

the actual data, while the solid black line represents our predictions for the estimation

dataset. For the validation period, which runs from the tenth month of RY13 to the

last month of RY14, we include predictions and one-period ahead prediction intervals

(PI) for 80% and 90% confidence, respectively. The narrower PI assumes that the

inputs are known exactly (i.e., with perfect clairvoyance); the wider interval assumes

that USAREC’s inputs are known, but that unemployment and PTQMA are not

known and are therefore forecast for each battalion using simple linear trend models.

Both known and unknown PIs are respectively symmetric about their predicted data,

although the reader will note non-symmetry of these PIs to each other. The latter

phenomenon is attributable to the forecast inputs differing from known inputs, which

in turn produce different predicted data. For brevity, we provide the predicted data

obtained from known inputs with a thick dashed line.

From Figure 18, our predictions explain 72% of the validation data variation at

the HQ USAREC level. In general, we consistently capture the fluctuations of the
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Figure 18. Contracts Achieved and Model Predictions, HQ USAREC-echelon Total
Over All Contract Types

estimation data, although there appears to be some indication that upward spikes

are not as precisely fit. Also, we note a three-month period between months tenth

and twelfth months of RY10 where our predictions underestimate the actual data by

as much as 1,346 contracts per month; this is quite a large deviation considering the

estimation data MAD for total contracts is only 424 contracts per month. There-

fore, it could be possible that a departure from the underlying process of contract

production occurred during this three-month span.

Continuing our analysis, we note a mild tendency to underestimate total produc-

tion in the latter parts of the validation period. This is to be expected to some extent,

given increasing distance from the forecast origin. At any rate, the 80% PI assuming

forecast inputs appears to be quite adequate in the characterization of error. Table 19

states response-unit validation PIs for both 80% and 95% at the HQ USAREC level.

Thus, the 80% PI for forecast data is ±1,389 contracts and the only departure from

this band occurs in the very last month. Upon further visual inspection of Figure 18,

the narrower (known inputs) 80% band of ±867 contracts seems equally useful. By

contrast, the 95% PIs for both known and forecast inputs appear to be too wide for

practical use.
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Table 19. 80% and 95% Prediction Intervals by Contract Type, HQ USAREC-echelon

80% PI 95% PI

k ±ŷ(k)|X ±ŷ(k)|X̂ ±ŷ(k)|X ±ŷ(k)|X̂
GA 436 686 667 1,049
OTH 291 461 445 705
SA 140 242 214 370
Total 867 1,389 1,326 2,124

Moving down to the contract level, Figure 19 provides the comprehensive MAPE

and MAD for the estimation and validation sets, respectively. Again, the compre-

hensive comparison can be interpreted as per unit, per month. From the standpoint

of percent error, SA contracts are predicted with more error than are GA and OTH;

SAs also experience the greatest degradation in prediction accuracy for validation by

far. However, the monthly production of SAs is also much smaller than either of the

other two contract types. So in terms of absolute error, SAs have less deviation than

do GA or OTH. This difference in interpretations of error between MAPE and MAD

illustrates the need for both metrics.
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Figure 19. Comprehensive MAD and MAPE for the Three Contract Types

Since all contract types decreases in prediction accuracy between the estimation

and validation data sets, we can determine whether or not these differences in per-

formance are statistically significant. To address the question, we generated 95%

confidence intervals—as shown in Table 20—on the MAD using the simple rule that

the root mean squared 1-period forecast error, σ̂ ∼= 1.25 ·MAD [29]. Since there is
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no overlap in the confidence intervals, we have reason to believe that the accuracy

degradation—as measured by comprehensive MADs for each data set—is statistically

significant for all three contract types. This result is consistent with our expecta-

tions although the relatively small magnitudes of performance degradation appear to

indicate stable, predictive models.

Table 20. Mean Absolute Deviations (MAD) for the Three Contract Models with 95%
Half-widths

k MAD(k) ± z0.05/2σ̂
(k)
E /
√
NE MAD(k) ± z0.05/2σ̂

(k)
V /
√
NV

GA 9.96± 0.60 11.91± 1.22
SA 4.47± 0.27 7.18± 0.74
OTH 8.11± 0.49 11.29± 1.16

For a closer look at each contract type, we provide the three respective HQ US-

AREC echelon plots in Figure 20. From Figure 20, the track and fit of GA and OTH

are quite similar and in fact fairly strong, with R2 equal to 0.70 and 0.73, respectively.

In the GA estimation set we also note the recurrence of a failure to fit the latter 3

months of RY10, similar to what we observed for total contracts at the HQ USAREC

echelon. Overall, the GA model tracks well until the last six months of validation

where the convexity of the predictions lags behind the data. For the OTH model,

we attribute its loss in accuracy to a sustained series of jumps in the actual data

to around 2,500 contracts in the third quarter of RY14. This event appears to be a

departure from previous behavior, especially considering the fact that GA historically

tracked quite closely to OTH, although this jump is not simultaneously experienced

by GA contracts. We wonder if this occurrence in the validation set represents a

process departure similar to what we observed in RY10 for GA and total contracts.

As with total contracts, 80% PIs with forecast inputs appear to be suitable for both

GA and OTH contracts. For SA contracts, the seasonal high in the third quarter

of RY14 is captured, albeit with less magnitude and perhaps a bit early. For some

95



0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Co
nt

ra
ct

s 
Ac

hi
ev

ed

Estimation        || Validation 

80% PI 95% PI Graduate Alphas 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Co
nt

ra
ct

s 
Ac

hi
ev

ed

Others 

Predicted 

Actual Data 

1-Period Ahead Predicted, known X 
1-Period Ahead PI, known X 

1-Period Ahead PI, forecast X 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Co
nt

ra
ct

s 
Ac

hi
ev

ed

Senior Alphas 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Urban Population Rate (CDC,CHR)

Unemployment Rate

Req_Vol_PR

Req_GSA_PR

Reg. Army SA Mission

Reg. Army OTH Mission

Reg. Army GA Mission

QMA (W&P)

Propensity (FPP9)

Labor Participation Rate (ACS)

HS Graduation Rate (CHR)

Army Recruiters (PERSTAT)

Appts. Conducted

Adult Obesity Rate (CHR)

17-24 Population (W&P)

Percent of significant terms with VIFs > 10

Reg. Army OTH Achieved

Reg. Army SA Achieved

Reg. Army GA Achieved

RSquare      0.70 
MAD        292.45   
MAPE       12.37% 

RSquare       0.73 
MAD         208.34  
MAPE          9.39% 

RSquare       0.63 
MAD         179.64  
MAPE         29.47% 

Figure 20. Time Series Data and Model Predictions for the Three Contract Types,
USAREC Totals

reason, the seasonal fourth quarter trough is not captured nearly as well in RY13.

Overall, responses appear to be significantly more muted in the SA model during

validation than in estimation; we are not sure why this occurred nor do we offer

speculation. Nonetheless, all models appear to be approximating their respective

processes with stable accuracy; this in itself is a promising indicator of their future

utility, especially in light of previous results which had dramatically lower estimation

fit metrics (R2 = 0.32, 0.27 and 0.10 for GA, OTH, and SA respectively) and did not
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address performance against a test set of data whatsoever [14].

Having analyzed validation performance from a macro-perspective, we finally delve

down to the battalion echelon. It is fitting that we conclude our analysis here; in-

sightful characterization of individual markets was our chief goal at the outset. In the

proceeding pages, we present for each contract type a series of three charts which al-

low us to illustrate differences between the validation data and our models’ battalion-

level predictions. For each contract type, the left-hand charts depicts actual contracts

achieved per month; it is sorted from top to bottom in decreasing order over the vali-

dation period. We provide the estimation data for visual reference but labels indicate

validation values only. The middle chart gives decreases in MAPE between the es-

timation and validation sets. A dashed line represents the comprehensive accuracy

degradation, which we use to discriminate above-average stability (to the right of

the dashed line) from below-average stability (to the left of the dashed line) across

the data-split. Finally, the right-hand chart shows each battalion’s RMSE for both

datasets while only labeling the validation values. The RMSE is useful in this case to

provide an interpretation of ±1 error standard deviation, assuming normality. How-

ever, we caution that such an assumption may not be valid for a battalion whose

accuracy degradation is large.

The reading of these charts in a left-to-right sequence can be helpful in assessing

both the potential production value and model accuracy for a given battalion market.

Clearly the risks of assigning potential production value to a market with a poor model

can be large. Furthermore, these risks are magnified at the extremes of observed

contract production (i.e., highest- and lowest- producing battalions). So, it is perhaps

useful to verify that battalions which perform at the extremes in also have small errors,

or at least small degradations in errors between the estimation and validation data

sets. For example, a model which appears to predict lots of contracts for a battalion
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may be problematic if its accuracy is poor; in this manner blind faith in the model

could lead to improperly high mission allocation. We examine these risks by assessing

the top five and bottom five stable models for each contract type.

Following the discussions of each contract type by unit, we provide Figure 24 in

the interest of added context. We have organized coropleth maps of the battalion

areas which are color-coded by average actual contracts achieved per month over the

validation period. We then summarize the the top five and bottom five battalions

as described above. This method of display enables the reader to make a visual

connection with the data, given the irregular unit boundaries that do not readily

conform to standard geography. We recommend setting both Figure 24 and Appendix

A aside for reference over the course of the next few paragraphs. Let us now begin

by looking at GAs in Figure 21.
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Figure 21. Model Performance with Estimation and Validation Data, GA by Battalion
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GA Contracts. Battalions from 2nd BDE (i.e., BN RSIDs beginning with

“3”), 5th BDE (i.e., RSIDs starting with “4”), and 6th BDE generally appear to

produce more GA contracts in both datasets. However, we also note that several

battalions from 2nd and 6th BDEs tend have greater than average degradation in

prediction accuracy. As examples, we present the top two producing battalions, 3J

(Raleigh) and 6K (Southern California); our model did not effectively predict the

superior contract production in these two regions. We suspect this failure is due to

a factor in these two markets which we did not include and by way of speculation,

we observe that each has a relatively large military presence as indicated by the

metric z2, sponsor share. We ultimately omitted this variable from our model due

to multicollinearity with other factors, although in these two regions it may have

considerable impact. After BNs 3J and 6K, the five next highest-ranked battalions

all experience very small prediction accuracy degradations as well as smaller RMSEs;

this appears to indicate that our models in these markets are fairly accurate and we

can therefore be confident in respective future predictions. Hence, BNs 4P (Phoenix),

3N (Tampa), 3A (Atlanta), 1B (Baltimore), and 4C (Dallas) are labeled in the “top

five” of Figure 24.

Battalions from 1st BDE and 3rd BDE (i.e., RSIDs beginning with “1” and “5”)

dominate the lower end of the GA production spectrum. However, large error prob-

lems in BNs 5A (Chicago) and 5J (Milwaukee) prevent these markets from being

adequately modeled. We do not offer speculation as to the content of these large er-

rors, except that the urban environment in Chicago may account for a different type

of error than the largely rural landscape of Wisconsin. By contrast, we are confident

in the accurate prediction of low GA contract production in BNs 1N (Syracuse), 1E

(Harrisburg), 5D (Columbus), 5C (Cleveland), and 3T (Baton Rouge). Battalions

not listed in our top or bottom five either have mediocre production or errors too
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large to consider the models as being accurate. Geographically, we note from Figure

24 that the dispersion of higher GA-producing markets is along the mid-Atlantic and

Southwest regions; modeling accuracy is generally in agreement with the exception of

the Tampa battalion. Under-performing GA markets are concentrated the Northeast

and upper-Midwest, with which model accuracy also appears to generally agree. The

notable exception is the Baton Rouge battalion, but we are not sure what factor may

account for its increased model accuracy.
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Figure 22. Model Performance with Estimation and Validation Data, OTH by Battalion

OTH Contracts. Interestingly, production of OTH contracts is geographi-

cally similar to that of GA contracts. We accurately capture top production in BNs 3A

(Atlanta), 3J (Raleigh), 4P (Phoenix), 3N (Tampa), and 3T (Baton Rouge). So, the

three markets in Atlanta, Tampa, and Phoenix have accurate models which predict

top production of both contract types. In Baton Rouge, we see a reversal of pro-

duction performance from GA to OTH, although accuracy remains consistently high.
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And in Raleigh, which was a top performer but not accurately modeled as such with

GA, we obtain both top production and accuracy with OTH contracts. This suggests

we may have omitted a factor which was uniquely relevant to the high-aptitude high

school graduate population in the Raleigh market. In general, we note both higher

production and accuracy across the Southeast. Regarding OTH under-performers,

the Mountain West constitutes a notable change from the GA geography. However,

the dispersion of accurately modeled OTH under-performers is remarkably similar to

that of their GA counterparts. Common to each category are BNs 1N (Syracuse),

1E (Harrisburg), and 5C (Cleveland). New additions are those of 5I (Great Lakes)

and 6J (Salt Lake City). We hesitate to speculate on why the Mountain West region

produces fewer OTH contracts or why some of the errors in the Northeast are large.

However and regarding the former, cultural and religious factors in the densely popu-

lated Salt Lake City region may lend themselves to more high-quality contracts (less

lower-quality).

SA Contracts. We recall that the SA model starts with a less accurate fit

to the estimation data than GA or OTH contracts. Thus, we can expect more severe

drops in performance against validation data at the market level. The average loss of

30% average percent accuracy appears to confirm this suspicion. However, we note

that of the 38 battalion-level markets, only 12 have losses in accuracy greater than

30%; this indicates that perhaps the large average loss is being skewed by several

outliers. As an example, we note that geographically contiguous BNs 3J (Raleigh),

3D (Columbia), and 3A (Atlanta) experience rather severe drops in percent accuracy

ranging from 73% to 99%. Our speculation is limited, but we do offer again the

possibility that high degrees of military presence in these markets may be impacting

production. The installations of Fort Bragg, Fort Jackson, and Fort Gordon are

located in this region and we conceive that high school senior populations may be
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more sensitive to changes in local military environments. This explanation may have

additional plausibility with regard to BN 6K (Southern California), which has the

highest largest military presence of all markets. However, this explanation is not

satisfactory for other high-error units with low military presence such as 3G (Miami)

or 5A (Chicago).

Parameter Beta (β) 
Std 
Beta (b) 

Std 
Error t Ratio Prob>|t| VIF 

BN_3N -1.7720 -0.1024 0.1519 -0.6700 0.5005 2.6346 
Unemployment Rate*BN_3N 20.9050 1.2509 0.5301 2.3600 0.0184 2.6057 
GA Lag1*BN_3N -0.0014 0.1332 0.5548 0.2400 0.8102 8.4011 
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Figure 23. Model Performance with Estimation and Validation Data, SA by Battalion

Now regarding the extreme performers: the five highest-producing units are also

accurately modeled. Interestingly, BN 3N (Tampa) is the most accurately predicted

and by far the highest SA-producing of all battalions during both estimation and

validation; we placed this unit in the top five for GA and OTH as well. Battalion

4P (Phoenix) also has a top-five ranking for all three contract types. Battalion 4C

(Dallas) is ranked high for both SA and GA contracts. Battalions 5H (Indianapolis)

and 6I (Sacramento) round out the top five accurate SA contract models; these areas

are relatively unique, having not figured prominently in either GA or OTH contract
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models. We are not exactly sure why this is the case since there does not appear

to a readily intuitive similarity between these regions. For bottom-performing, yet

accurate SA models we once again turn to the Northeast. Battalions 5C (Cleveland),

5D (Columbus), and 5I (Great Lakes) are recurring entires. Rounding out the bottom-

five SA models are BNs 1A (Albany) and 1K (Mid-Atlantic), which are also new

entires. Upon inspection of Figure 23, the choice of the SA bottom-five is made

more difficult due to frequent occurrences of large accuracy losses. In each of the

problematic markets (e.g., BNs 1B, 3G, etc.) the model predicted significantly more

contracts than were actually produced; this indicates some factor is not being properly

accounted for in these areas. Unfortunately, there does not appear to be a common

factor linking these areas so we do not offer speculation as to its nature.

Closing Remarks. We are now at the end of our analysis, and are nearing

completion of our overall task at-hand. By way of transition, let us concisely re-

capitulate our results and introduce several assertions to the basis for our concluding

chapter. Herein we have described our process of constructing linear regression mod-

els using a unique set of variables that characterize specific recruiting markets and

contract types. Given the consistently accurate predictions of these models in the

face of new data, we have shown that all three models possess some degree of future

utility. Relative to the RMI currently in use, our models convey more information

regarding the response; moreover, we utilize a set of predictor variables that is more

independent and arguably more universally descriptive. Also, the RMI models two

contract types—GA and SA—together in the same response. Yet our efforts have

shown that these two contracts respond differently in nearly every respect. In and of

itself, this is a valuable insight. Finally, the accuracies of our models as measured by

R2 far exceed those in previous studies. Yet as always, there is room for improvement;

we will address this fact in due course in our next and final chapter.
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Figure 24. Choropleth Map of Contracts Achieved per Month (Validation Data Only),
with Top-five and Bottom-five Battalion Models
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V. Conclusion

As we begin our closing chapter, we are mindful of the contributions of our research

with respect to three key areas. First, we wish to provide an assessment of how closely

our results agree with the findings of previous literature, which we covered in Chapter

II. Second, we need to summarize the utility of our approach as compared with current

USAREC procedures. Lastly and prior to our closing remarks, we we take an honest

look at the limitations of our research and suggest several ways upon which it could

be improved.

5.1 Comparisons with Previous Literature

Making quantitative comparisons between our research and previous literature is

somewhat challenging for a couple of reasons. The first reason encompasses differences

between the definition and reporting of independent parameters in the models. Much

of the literature we reviewed contained transformed independent variables, whereas

our modeling approach did not necessitate such transformations. Therefore, a direct

comparison of magnitudes between independent terms common to our and previous

research (e.g., unemployment) is not possible and we refrain from attempting it. We

can, however, provide a general assessment regarding the relative importance for at

least two common independent variables: recruiting missions and unemployment.

All three of our models show that the mission is more important, generally, than

unemployment.1 While previous studies are not in universal agreement over the exact

magnitudes of these two effects, there appears to be consensus regarding the relative

importance we just presented, as well as the fact that both are positively correlated

with contracts achieved. The one exception was our finding that unemployment

1Recall that for individual units, this may differ although the majority do not deviate from the
magnitudes of each main effect. See Appendix F for individual unit models details.
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was negatively correlated with SA contracts achieved, although as we mentioned in

Chapter IV this may be due to a coincidental cycle between unadjusted unemployment

and SA contracts that is not present with GA or OTH contracts. Unfortunately,

substantial differences in between the remainder of independent variable specifications

preclude further comparisons of such effects.

A second difficulty in the comparison of results is related to the first, but instead

deals with differences in dependent variable definitions. In fact, only one study—that

of Dertouzos and Garber (2008)—is directly comparable for the three responses of

GA, OTH, and SA contracts that we used in our research. In the former study the

authors achieved R2 values of 0.32, 0.27 and 0.10 for GA, OTH and SA contracts,

respectively [14] when using the month as the time unit of observation; by contrast,

we showed that for validation data our models achieved R2 values equal to 0.70, 0.73

and 0.63 for the same respective contract types. Using our validation fits as a baseline,

our results still provide considerable relative improvements of 530%, 170%, and 119%

for SA, OTH, and GA contracts, respectively. Figure 25 presents the R2 values for

our research and that of Dertouzos and Garber (2008). We denote our baseline for

the primary relative comparison with an asterisk.
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Figure 25. Model Fits From This Research Compared with Previous Literature

The improvements are even more pronounced when we examine our metrics of fit for

the estimation data, for which we obtained R2
Adj of 0.74, 0.81 and 0.70, respectively

(non-adjusted R2 are higher by about 0.01 in each case). Now when using a six-month
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aggregate unit of observation, Dertouzos and Garber were able to achieve R2 of 0.65

for GA and OTH and 0.31 for SA [14]. Notwithstanding this improvement by the

previous study, our model fit results remain superior while maintaining the use of

monthly data.

We do finally note a dramatic difference in the number of independent variables

we used as compared with previous literature. We used a set of five continuous

variables compared to previous studies (from Appendix B) which used 21 continuous

independent variables on average. We do sacrifice some of the apparent gains in

parsimony by including between 37 and 40 indicator variables for battalions and

quarters, but these additions are necessary to achieve market specificity with respect

to each contract model. In fact, we note that the inclusion of market-specific models—

which we identified early on as a key attribute of decision-maker utility—is another

key improvement over all previous efforts. Thus, we have shown that a refined set

of variables can produce fairly superior models, both in terms of fit to the data and

utility to decision-makers.

5.2 Comparison to Current USAREC Models

The current method of missioning at USAREC incorporates a three-step series

of weighting numerous contract achievement factors by ZIP codes. The RMI, which

is the subject of our initial analysis in Chapter IV, is only the second step in this

weighting process; as such, its outputs are not meant to produce direct predictions of

contracts achieved as it is not the final step in the missioning process. Our models,

on the other hand, do produce forecasts of contract production in a single step. This

fact alone could present a valid argument for implementation of our models.

Nevertheless, we have some concern that the current specification of the RMI

itself is problematic. For one, it contains significant multicollinearity—between the
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required quality per recruiter and required volume per recruiter terms—which must be

addressed. However, the greater issue lies with the inclusion of a dependent variable,

achieved volume per recruiter, in the independent variable set. The fit of this model—

which has R2 = 0.93—appears to be so good as to render subsequent improvement

efforts futile. However, a truly correct specification requires removal of the volume

per recruiter term, or its inclusion in lagged form. For simplicity we chose as the

baseline the form of the RMI without this term entirely. Thus, when the RMI is

specified with a correct set of independent variables, we see an R2 of 0.70 which

much more closely resembles the results we obtained. Given that all three of our

contract models obtained adjusted correlation coefficients greater than or equal to the

unadjusted correlation of the RMI, it appears that collectively they provide a modest

improvement over the RMI assuming its specification less volume per recruiter in an

independent role.

Perhaps the most salient observation we can make in comparison to the RMI (fit

metrics aside) is our distinction between GA and SA contracts. The RMI includes

GA and SA contracts achieved per recruiter in the same ratio, implying the two

contracts have similar responsive attributes. However, we observed beginning with

the literature review and continuing with variance reduction and ultimately model

fits, that these two contracts respond much differently from one another. Given these

differences, it would seem counter-productive to continue modeling these contract

types simultaneously within a single response. Furthermore, the relative strength of

our models should be an encouraging sign that separating the two contract types can

be undertaken without significant loss of accuracy.
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5.3 Future Research Opportunities

Even with the promising results we obtained, there is ample opportunity for fu-

ture exploration. First, we note that the list of potential regressors can always be

expanded. Two key factors come to mind, which are those of fiscal expenditures Army

RC missions; previous literature indicated both of these to be important to one degree

or another. In the case of expenditures—which can be further categorized by normal

operations and support or advertising costs—the data was simply not available for

enough of the estimation data. We attempted to include competition from RC mis-

sions indirectly by virtue of recruiter share, but this term was discarded during the

variance reduction stage of our analysis due to multicollinearity. Perhaps we should

have included separate RC missions themselves, similar to the active duty missions

which proved to be highly influential, and this is a lesson learned.

Third, and perhaps most importantly, the utility of our models may not be fully

realized by HQ USAREC until the models of each contract type can be unified into

a single, comprehensive, deterministic platform. By this we mean that the control-

lable regression model variables (i.e., GA+OTH mission, Req SA PR) for all three

contract types be simultaneously decided upon in such a way so as to maximize pre-

dicted contracts subject to organizational constraints. As examples of organizational

constraints for USAREC, we suggest the high-school graduate and quality require-

ments imposed by Congress and/or inter-battalion balances of mission equity. An

additional constraint should also prevent extrapolation beyond the input data used

to estimate the models to ensure that the coefficients remain properly predictive. And

while a single objective such as contract maximization may be useful, we suspect that

added utility may be present with the incorporation of goals such as minimization of

prediction error. The unit-specific measures of prediction accuracy we included at the

conclusion of Chapter IV could easily be leveraged for this purpose, thereby ensuring
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that risk is sufficiently accounted for in the allocation of recruiting resources. If it

can be shown that a USAREC-level contracts achieved prediction interval—obtained

from any type of optimization routine such as the two we have just described—differs

significantly from the PI obtained using actual inputs, a valid case for the utility of

the former may exist.

5.4 Final Remarks

We have shown that adequate models for each of the three major Army Active

Duty contract types—high-aptitude high school graduates, high-aptitude high school

seniors and others—can be quantitatively estimated with individual accuracies greater

than or equal to both previous literature as well as the current model in use by HQ

USAREC. Furthermore, we have shown that such models can be parsimoniously

estimated according to the required assumptions of model adequacy. We have then

shown that all three models perform well in the face of new data, achieving close to

two-thirds prediction accuracy in the worst case of high-aptitude high school seniors.

Finally, we note that all these results were achieved using largely open-source data,

which was innovatively mapped to battalion-specific areas using county-level data. In

light of these results, we make the case for implementation of our modeling approach

for Army recruiting—and indeed for any private sector marketing strategy—as well

as for continuing efforts to achieve greater granularity with respect to geographical

data. Although predicting the future is inherently difficult, our attempt at doing so

appears to light an encouraging path forward.
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Appendix A. Unit Recruiting Station Identifications (RSID)

Table A.1. Brigade RSIDs

RSID Unit - Headquarters (Region)

1 1st BDE - Ft. Meade (Northeast / Mid-Atlantic)
3 2nd BDE - Redstone Arsenal (Southeast)
4 5th BDE - Ft. Sam Houston (Plains)
5 3rd BDE - Ft. Knox (Upper Midwest)
6 6th BDE - Las Vegas (Mountain / West)

Table A.2. Battalion RSIDs

RSID Region

1A Albany
1B Baltimore
1D New England
1E Harrisburg
1G New York City
1K Mid-Atlantic
1N Syracuse
1O Richmond
3A Atlanta
3D Columbia
3E Jacksonville
3G Miami
3H Montgomery
3J Raleigh
3N Tampa
3T Baton Rouge
5A Chicago
5C Cleveland
5D Columbus
5H Indianapolis
5I Great Lakes
5J Milwaukee
5K Minneapolis
5N Nashville
4C Dallas
4D Denver
4E Houston
4G Kansas City
4J Oklahoma City
4K San Antonio
4P Phoenix
6F Los Angeles
6H Portland
6I Sacramento
6J Salt Lake City
6K Southern California
6L Seattle
6N Fresno
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Appendix B. Variables Used in Past Studies

Table B.1. Dependent Variables in Reviewed Literature

Variable Dertouzos
(1985)

Kilburn,
et al (’99)

Murray,
et al (’99)

Warner,
et al (’01)

Kleykamp
(2006)

Dertouzos,
et al (’06)

Dertouzos,
et al (’08)

Asch, et al
(’09)

Gibson, et al
(’09,’11)

Contracts, high-quality men y
Contracts, high-quality women y
Contracts, other men y
Contracts, other women y
Contracts, high-quality graduates y y
Contracts, high-quality seniors y y
Contracts, high quality White graduate y
Contracts, high quality African-American graduates y
Contracts, high quality Hispanic graduates y
Contracts per Recruiter, high-quality y
Contracts per Recruiter, All y
Contracts per Station, high quality y
Number of accessions y
Probability of choosing to enlist y y
Probability of choosing to attend college y y
Probability of choosing to work/other y y
Enlistments, other graduates y y*
Enlistments, high quality graduates y y* y
Propensity y
Probability of DEP Attrition y

*lagged
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Table B.2. Independent Variables in Reviewed Literature:
Advertising & Demographic

Variable Broad Category Dertouzos
(1985)

†Kilburn,
et al (’99)

Murray,
et al (’99)

†Warner,
et al (’01)

†Kleykamp
(2006)

Dertouzos,
et al (’06)

Dertouzos,
et al (’08)

Asch, et al
(2009)

Gibson, et al
(’09,’11)

Advertising spending by MUD-Navy Advertising x x
Total Army advertisements
in last 11 months

Advertising x

Total Army television ads
in last 11 months

Advertising x

Total Army non-T.V. ads
in last 11 months

Advertising x

Total joint ads
in last 11 months

Advertising x

Total joint T.V. ads
in last 11 months

Advertising x

Total joint non-T.V. ads
in last 11 months

Advertising x

Ratio of QMA population
to OPRA recruiters

Demographic x x

Ratio of African American men
to total men

Demographic x x

Ratio of Hispanic men to total men Demographic x x
Percentage of 17–21 year old
male population in college

Demographic x

Ratio of urban population
(≥ 50, 000 per US Census)
to total population

Demographic x

Ratio of urban cluster population
(2, 500 ≤ p < 50, 000)
to total population

Demographic x

Ratio of single-parent households
in year 2000 to year 1990

Demographic x

Ratio of children in poverty
to total population

Demographic x

Ratio of professed adult Catholics
to total propulation

Demographic x

Ratio of adults professing
an Eastern religion
to total propulation

Demographic x

Ratio of professed non-Catholic Christians
to total propulation

Demographic x

Ratio of veteran population, age ≤ 32,
to young male population (age 17–21)

Demographic x x

Ratio of veteran population, age 33–42,
to young male population (age 17–21)

Demographic x x

Ratio of veteran population, age 43–55,
to young male population (age 17–21)

Demographic x x

Ratio of veteran population, age 56–65,
to young male population (age 17–21)

Demographic x x

Ratio of veteran population, age 65–72,
to young male population (age 17–21)

Demographic x x

Ratio of veteran population, age ≥ 73,
to young male population (age 17–21)

Demographic x x

Ratio of recruiters
to size of the adult population

Demographic x x

Percent veteran Demographic x x x
Percent non-citizen Demographic x
Percent obese Demographic x
Percent college enrollment Demographic x x x
Average age Demographic x
Correctional facility population Demographic x
Population density Demographic x x
Service members Demographic x
Military casualty count Demographic x
Percent African-American,
high school population

Demographic x

Percent Hispanic,
high school population

Demographic x

Proportion of population with asthma Demographic x
High school population Demographic x
Percent county employment from military Demographic x
Percent African-American Demographic x x x
Percent Hispanic Demographic x x x
Percent female Demographic x
Population of males aged 15–19 years Demographic
Percent of labor force female Demographic x
Percent of the male population
male and aged 18–24

Demographic x

High quality African-Americans available Demographic
High quality Hispanic available Demographic
High quality available (all) Demographic
Percent QMA Demographic x
†Variables obtained from individual survey data are not shown.
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Table B.3. Independent Variables in Reviewed Literature:
Geographic, Mission, Political, & Recruiter

Variable Broad Category Dertouzos
(1985)

†Kilburn,
et al (’99)

Murray,
et al (’99)

†Warner,
et al (’01)

†Kleykamp
(2006)

Dertouzos,
et al (’06)

Dertouzos,
et al (’08)

Asch, et al
(2009)

Gibson, et al
(’09,’11)

Mountain (binary) Geographic x x
North Central (binary) Geographic x x
South (binary) Geographic x x x
Pacific (binary) Geographic x x
Average July temperature Geographic x
July average precipitation Geographic x
July average humidity Geographic x
Northeast region Geographic x
West region Geographic x
Distance to nearest college or university Geographic x
Distance to nearest military installation Geographic x
Size of nearest college or university Geographic x
Size of nearest military installation
(in 10,000 personnel)

Geographic x

Distance to nearest
Air Force recruiting office

Geographic x

Distance to nearest
Coast Guard recruiting office

Geographic x

Distance to nearest
college or university-squared

Geographic x

Distance to nearest
Marine Corps recruiting office

Geographic x

Distance to nearest
Navy recruiting office

Geographic x

Mission, high-quality seniors
plus DEP loss

Mission x

Mission, high-quality graduates
plus DEP loss

Mission x

Mission, others plus DEP loss Mission x
Percent of national enlistments,
combat support MOSs

Mission x

Percent of national enlistments,
white-collar MOSs

Mission x

Percent of national enlistments,
blue-collar MOSs

Mission x

Percent of national enlistments,
combat MOSs

Mission x

Ratio of SA production to prev. year mission
with 3-month lag

Mission x

Ratio of GA production to prev. year mission
with 3-month lag

Mission x

Ratio of OTH production to prev. year mission
with 3-month lag

Mission x

Recruiter Goal, high quality
(mission plus DEP losses)

Mission x x x x

Recruiter Mission, high quality
(excluding DEP losses)

Mission x

Station Mission, high quality
(excluding DEP losses)

Mission x

Iraq War effect Political x
President Bush approval rating Political x
RA contracts as percentage of
total DoD active duty contracts, 1999

Production x x

Mission- Air Force level 2
MUD meeting mission

Production x

Mission- number of Marine recruiting
offices that made mission

Production x

Number of Regular Army Recruiters
on production

Recruiter x

2-Recruiter Station (binary) Recruiter x x
3-Recruiter Station (binary) Recruiter x x
4-Recruiter Station (binary) Recruiter x x
5-Recruiter Station (binary) Recruiter x x
≥6-Recruiter Station (binary) Recruiter x
Ratio of on-production commander to
on-production recruiters

Recruiter x

Ratio of (non-production) recruiters
on duty to on-production recruiters

Recruiter x

Ratio of (non-production) recruiters absent
to on-production recruiters

Recruiter x

Ratio of (non-production) commanders to
on-production recruiters

Recruiter x

Recruiter demographics
(20 various incl. race, ed cat,
AFQT cat, MOS, etc.)

Recruiter x

Recruiters-Army Recruiter x x x x
ASVAB tests given in high schools Recruiter x
†Variables obtained from individual survey data are not shown.
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Table B.4. Independent Variables in Reviewed Literature:
Reserve/Joint, Resource, Socio-economic, & Time

Variable Broad Category Dertouzos
(1985)

†Kilburn,
et al (’99)

Murray,
et al (’99)

†Warner,
et al (’01)

†Kleykamp
(2006)

Dertouzos,
et al (’06)

Dertouzos,
et al (’08)

Asch, et al
(2009)

Gibson, et al
(’09,’11)

Ratio of RC recruiters to OPRA recruiters Reserve, Joint x
Ratio of RC“OTH” mission to
number of OPRA recruiters

Reserve, Joint x

Ratio of RC prior service mission to
number of OPRA recruiters

Reserve, Joint x

Ratio of RC high school mission to
number of OPRA recruiters

Reserve, Joint x

Ratio of RC “OTH” DEP loss to
number of OPRA recruiters

Reserve, Joint x

Ratio of RC prior DEP loss to
number of OPRA recruiters

Reserve, Joint x

Ratio of RC high school DEP loss to
number of OPRA recruiters

Reserve, Joint x

Recruiters-Air Force Reserve, Joint x
Recruiters-Army Guard Reserve, Joint x
Recruiters-Army Reserve Reserve, Joint x
Recruiters-Coast Guard Reserve, Joint x
Recruiters-Marine Corps Reserve, Joint x
Recruiters-Navy Reserve, Joint x
Bonus accessions- Marine Corps Reserve, Joint x
Bonus accessions-Air Force Reserve, Joint x
Total sister-service mission,
high quality

Reserve, Joint x

Enlistment bonus,
average total offered in cash

Resource x x

Ratio of national maximum MGIB benefit to
average state college tuition

Resource x

Percentage of new recruits offered
the Army College Fund

Resource x x

Enlistment incentives- Navy, cash only Resource x
Enlistment incentives- Navy, total Resource x
Average business size (in employees) Socio-economic x
Average vehicles per household Socio-economic x
Change in unemployment from previous month Socio-economic x
College entrance test-ACT composite scores Socio-economic x
Crime rate Socio-economic x
English proficiency Socio-economic x
Government workers Socio-economic x
Household effective buying income
(in hundreds of thousands of $)

Socio-economic x x

Households with no vehicles Socio-economic x
Per capita income Socio-economic x
Percent change in per capita
personal income

Socio-economic x

Population in poverty Socio-economic x
Property crimes Socio-economic x
Proportion of college graduates Socio-economic x
Proportion of population married Socio-economic x
Proportion of population smoking
every day

Socio-economic x

Ratio of manufacturing earnings to
E-4 monthly salary

Socio-economic x x

Ratio of military to civilian wages Socio-economic x x x
SAT scores-math Socio-economic x
Subject test-algebra scores Socio-economic x
Unemployed Socio-economic x
Unemployment rate Socio-economic x x x x x x
Unionized workers Socio-economic x
Violent crimes Socio-economic x
Volunteers Socio-economic x
Wages for manufacturing production workers Socio-economic x
Weighted average tuition Socio-economic x
January (binary) Time x x
February (binary) Time x x x
March (binary) Time x x x
April (binary) Time x x x
May (binary) Time x x x
June (binary) Time x x x
July (binary) Time x x x
August (binary) Time x x x
September (binary) Time x
October (binary) Time x x x
November (binary) Time x x x
December (binary) Time x x x
†Variables obtained from individual survey data are not shown.

115



Appendix C. ZIP Code Crosswalk Procedure

As we mentioned in Chapter III, the crosswalk between ZIP codes and counties

required a multi-step procedure. This stems from the fact that no reliable means of

directly linking counties to directly ZIP codes exists, as we describe subsequently.

However, we do show that ZIP codes can be effectively linked similar geographies

known as ZIP Code Tabulation Areas (ZCTAs). After performing this intermediate

step, ZCTAs can then be mapped directly to counties which completes the desired

original linkage. This Appendix covers our exploratory investigation and ultimate

resolution of these mapping processes.

We begin our discussion at the most basic mapping level, which involved matching

every ZIP code with its respective recruiting unit. This step was relatively easy since

for each echelon (i.e., brigade, battalion, company, center) recruiting units are defined

by a mutually exclusive set of ZIP codes. We initially matched ZIP codes to the

center level but learned this would be too difficult to track in past years since lower-

echelon boundaries change much more frequently than those of battalions or brigades.

Therefore, we matched only to the battalion and brigade echelons as indicated by the

following pseudo-code:1.

FOR Each ZIP code In z5max.xlsx

IF ZIP code is not in 50 states or D.C. THEN Remove record

ELSE

FOR each ZIP and FIPS < 5 chr.

Add leading ZIP zeros (CT,MA,ME,NJ,NY/Fishers Is.,RI,VT)

Add FIPS zeros (AL-CT)

Format as text

NEXT ZIP-FIPS string

FOR each USAREC echelon (BDE,BN,CO,CTR)

Assign Echelon to ZIP Code with ZIPs_by_RSID.xlsx

IF echelon is not found THEN assign closest contiguous CTR--BDE

NEXT Echelon

END IF

NEXT ZIP code

1FIPS is an acronym that stands for Federal Information Processing Standards; FIPS are 2-digit
and 3-digit numerical codes that indicate states and counties, respectively. The original crosswalk
file given by USAREC (“z5max.xlsx”) required some cleaning to convert FIPS codes to a uniform,
usable format.
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Next, we located the master files that correlate ZIP codes to counties by a variety

of metrics. These files are available from the Department of Housing and Urban

Development (HUD) [47]. We attempted to match the two files with the following

approach:

Revised ZIPs + units = ZIP_CountyFIPS_AOs.xlsm

FOR 2QTRFY15,1QTRFY15,1QTRFY14,1QTRFY13,1QTRFY12,1QTRFY11,1QTRFY10

Download HUD ZIP-to-County Correlations from

http://www.huduser.org/portal/datasets/usps_crosswalk.html

FOR Each ZIP-FIPS pair (1 to 40,999) IN ZIP_CountyFIPS_AOs.xlsm

FOR Each HUD correlation file (1 to 7)

Assign percent of total ZIP addresses in county (FIPS)

NEXT HUD file

NEXT ZIP-FIPS Pair

Save correlation file as hidden tab to ZIP_CountyFIPS_AOs.xlsm

NEXT QTR

At this point, we noted poor accuracy in the matching process. Table C.1 shows

this problem being exacerbated with each previous year. We began to assess alterna-

tives to matching ZIP codes directly. ZCTAs are analogous to ZIP codes; the former

is used by the Census Bureau while the latter is strictly a US Postal Service construct

for delivery routes. Also, ZCTA boundaries are likely to be more constant over time

[2]. However, the Census Bureau does not publish a direct correlation file between

ZIP codes and ZCTAs [48]. It does, however, give ZCTA-county correlations for Cen-

sus 2010. A graphical summary of the difference between ZCTAs and ZIP codes is in

Figure C.1.

Table C.1. Accuracy of Housing and Urban Development (HUD) ZIP Code-to-County
Correlation Files

2QTR15 1QTR15 1QTR14 1QTR13 1QTR12 1QTR11 1QTR10

Number ZIP codes Unmtached 1883 1893 2263 2278 2378 5050 5149
As % of Total ZIPs 4.6 4.6 5.5 5.6 5.8 12.3 12.6

A public database known as “UDS Mapper” provides a ZIP code to ZCTA cross-

walk for calendar year (CY) 2014 [49]. UDS Mapper is a joint venture between the

Department of Health and Human Services (DHHS) and the Robert Graham Center,

a body of clinical researchers, social scientists, economists, and geographers. UDS

117



Figure C.1. Overview of ZCTA Design (Source: U.S. Census Bureau [2])

stands for the Uniform Data System [50]. From the website, “[DHHS], John Snow,

Inc. and the Robert Graham Center have collaborated to develop a mapping and

decision-support tool driven primarily from data within the Uniform Data System

(UDS), previously not publicly accessible at the local level [50].”

After downloading this file we repeated the matching procedure in a similar man-

ner. However, the ZCTAs allowed us to then use Census Bureau files to match county

populations, as is shown by the following example code [27, 28].

WITH CY2014 (most current available)

Download the ZIP-code to ZCTA crosswalk file available from

http://www.udsmapper.org/zcta-crosswalk.cfm

Format fields as text (i.e., retain leading zeros)

FOR Each ZIP code (1 to 40,999) In ZIP_CountyFIPS_AOs.xlsm

Assign ZCTA

NEXT ZIP code

Save crosswalk file as tab in ZIP_CountyFIPS_AOs.xlsm

END WITH

WITH 2010 Census

Download ZCTA to County correlation file available from

https://www.census.gov/geo/maps-data/data/zcta_rel_download.html

Format fields as text (i.e., retain leading zeros)

FOR Each ZIP-code (1 to 40,999) In ZIP_CountyFIPS_AOs.xlsm

Assign percent ZCTA population residing in applicable county(counties)

NEXT

Save correlation file as tab in ZIP_CountyFIPS_AOs.xlsm

END WITH

At this point, all but 15 ZIP codes were successfully matched to ZCTAs and coun-

ties (a total error rate of less than 0.04%). However, of the 15 un-matched ZIP codes,

population is recorded as zero in all of them, and none were found to be matched
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in any of the HUD databases. Upon further inspection, several of the ZIP codes are

(or were, at one point) in extremely remote areas of Alaska and the southwest where

civilization is likely to be zero. For all intents and purposes, the exclusion of these

ZIP codes from the weighting procedure is not likely to be problematic.
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Appendix D. Variable Time Series Plots

D.1 Operational Variables
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Figure D.1. 17 to 24 Year-Old Population (Source: Woods & Poole, Inc.)

0%

5%

10%

15%

20%

25%

30%

35%

Ad
ul

t O
be

si
ty

 R
at

e 
(C

H
R

) 

Recruiting Year (YYYYMM) 

BDE 1 BDE 3 BDE 4 BDE 5 BDE 6

Figure D.2. Adult Obesity Rate (Source: County Health Rankings)
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Figure D.3. High School Graduation Rate (Source: County Health Rankings)

0%

2%

4%

6%

8%

10%

12%

14%

Ill
ic

it 
D

ru
g 

U
se

 (S
AM

H
SA

) 

Recruiting Year (YYYYMM) 

BDE 1 BDE 3 BDE 4 BDE 5 BDE 6

Figure D.4. Illicit Drug Use Rate (Source: County Health Rankings)
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Figure D.5. Labor Participation Rate (Source: 5-Year ACS)
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Figure D.6. Propensity (Source: USAREC)
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Figure D.7. QMA Population (Source: Woods & Poole, Inc.)
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Figure D.8. Sponsor Share (Source: Military One Source)

122



0%

2%

4%

6%

8%

10%

12%

14%

U
ne

m
pl

oy
m

en
t R

at
e 

Recruiting Year (YYYYMM) 

BDE 1 BDE 3 BDE 4 BDE 5 BDE 6

Figure D.9. Unemployment Rate, Not Seasonally Adjusted (Source: LAUS)
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Figure D.10. Proportion of Population Living in Urban Areas (Source: LAUS)
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Figure D.11. Violent Crimes (Source: County Health Rankings)
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Figure D.12. Voter Participation Rate (Source: The Guardian)
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D.2 Mission Variables
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Figure D.13. Appointments Made (Source: USAREC)
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Figure D.14. Appointments Conducted (Source: USAREC)
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Figure D.15. Graduate Alpha (GA) Contracts (Source: USAREC)
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Figure D.16. Senior Alpha (SA) Contracts (Source: USAREC)
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Figure D.17. Other (OTH) Contracts (Source: USAREC)
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Figure D.18. Contract Share (Source: DMDC)
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Figure D.19. Army Recruiters (Source: USAREC)
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Figure D.20. Recruiter Share (Source: DMDC)

127



Appendix E. Supplementary Computer Code

E.1 County-to-Battalion Weighting (Microsoft Excel®2010, VBA)

Sub WeightCountyData()

Dim rngFIPSCol As Range, rngNumerCol As Range, rngDenomCol As Range, rngErrorCol As Range, rngTemp As Range

Dim strSeriesType As String, strSeriesName As String, strWorkbookName As String, strSeriesDenom As String

Dim i As Long, t As Long, lngN As Long ’counters (i: general, t:time, N: number of time observations)

Dim varTemp As Variant

Dim kSeries As Long

Application.ScreenUpdating = False

’These will be captured as user inputs later

strWorkbookName = "Labor Participation (ACS5).xlsx" ’where the data is located

strSeriesName = "Labor Participation Rate (ACS)" ’numerator worksheet location

strSeriesDenom = "Labor Participation Rate (ACS)" ’denominator worksheet location

strSeriesType = "Rate" ’Rate or Raw

lngN = 5 ’how many columns (time periods) of input data to weight

’*******************************************************************************************

’Capture series names (assumes 1 series)

For i = 1 To 38

Worksheets("xferBN").Activate

Cells(2, i).Value = strSeriesName

Next i

For i = 1 To 5

Worksheets("xferBDE").Activate

Cells(2, i).Value = strSeriesName

Next i

’Copy the FIPS Column (no header) from the user’s data

‘(assumes same FIPS alignment structure for numerator and denominator)

Workbooks(strWorkbookName).Worksheets(strSeriesDenom).Activate

Set rngFIPSCol = Range("A3:A3145")

rngFIPSCol.Copy

Workbooks("DSS_v5.xlsm").Worksheets("scratch").Activate

Range("A2").Select

With Selection

.PasteSpecial xlPasteValues

End With

For t = 1 To lngN ’N = 60 for monthly data, 5 for annual

’Copy the Numerator Column from the user’s data

Workbooks(strWorkbookName).Worksheets(strSeriesName).Activate

Range("B3").Select ’top left cell of the first (leftmost) desired numerator column

Set rngNumerCol = Range(ActiveCell.Offset(0, t - 1), ActiveCell.Offset(3142, t - 1))

rngNumerCol.Copy

Workbooks("DSS_v5.xlsm").Worksheets("scratch").Activate

Range("B2").Select ’B -> NUMERATOR COLUMN

With Selection

.PasteSpecial xlPasteValues

End With

If strSeriesType = "Rate" Then ’Copy the Denominator Column... always TRUE for unemployment rates

Workbooks(strWorkbookName).Worksheets(strSeriesDenom).Activate

Range("B3150").Select ’top left cell of the first (leftmost) desired denominator column

Set rngDenomCol = Range(ActiveCell.Offset(0, t - 1), ActiveCell.Offset(3142, t - 1))

rngDenomCol.Copy

Workbooks("DSS_v5.xlsm").Worksheets("scratch").Activate

Range("C2").Select ’C -> DENOMINATOR COLUMN

With Selection

.PasteSpecial xlPasteValues

End With

Else ’don’t need a denominator column

End If

’Copy and Paste weighted BDE Numbers for one time observation, t of N

Workbooks("DSS_v5.xlsm").Worksheets("geocorr").Activate

ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh

If strSeriesType = "Rate" Then

Set rngTemp = Range("Q6:Q10") ’rates

Else

Set rngTemp = Range("S6:S10") ’raw numbers

End If

varTemp = WorksheetFunction.Transpose(rngTemp)

Worksheets("xferBDE").Activate

Range(Cells(2 + t, 1), Cells(2 + t, 5)) = varTemp
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’Copy and Paste weighted BN Numbers for one time observation, t of N

Worksheets("geocorr").Activate

ActiveSheet.PivotTables("PivotTable2").PivotCache.Refresh

If strSeriesType = "Rate" Then

Set rngTemp = Range("Q15:Q52") ’rates

Else

Set rngTemp = Range("S15:S52") ’raw numbers

End If

varTemp = WorksheetFunction.Transpose(rngTemp)

Worksheets("xferBN").Activate

Range(Cells(2 + t, 1), Cells(2 + t, 38)) = varTemp

Next t

Application.ScreenUpdating = True

End Sub
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E.2 Stochastic Mean Value Imputation (Microsoft Excel®2010, VBA)

Sub ParseInterpolate()

Dim lngNumPeriods As Long, j As Long, lngMonthsPerPd As Long, k As Long, lngStdErr As Long, lngRandErr As Long

Dim dblPeriodPointEst As Double, lngErrorMargin As Long, dblRand As Double, lngRandError As Double, dblStdDev As Double

Dim dblStdError As Double

Dim lngNumUnitCounties As Long, dblPeriodAvg As Double, dblRange As Double, dblRangeStep As Double, dblImputedLast As Double

Dim arrTransferArray As Variant, dblPeriodAvgNext As Double, strIsCumulative As String, strNeedsFinishVal As String

Dim strTypeData As String

lngNumVars = 1 ’adjust as required

lngNumPeriods = 5 ’adjust as required (ANNUAL = 5 for 2010 to 2014)

lngMonthsPerPd = 12 ’adjust as required (*12 for annual, 6 for semi annual, 3 for quarterly data)

strIsCumulative = "N" ’is the data cumulative? (Y/N)

strNeedsFinishVal = "N" ’does the data need a final value in order to interpolate the last year’s monthly values?

strTypeData = "Decimal" ’what type of data needs to be interpolated? (Integer, Decimal)

’********lngNumPeriods*lngMonthsPerPd = 60*************

Application.ScreenUpdating = False

For Each sht In ActiveWorkbook.Sheets

sht.Activate

ActiveSheet.Unprotect

Next

For lngUnit = 1 To 38

For i = 1 To lngNumVars ’number of cells (variables) to parse per Unit (BDE or BN)

strUnitID = Worksheets("xferBN").Cells(1, lngNumVars * lngUnit - lngNumVars + i)

lngColPasteTo = Worksheets(strUnitID).Cells(1, Columns.Count).End(xlToLeft).Column + 1

Worksheets("xferBN").Range("A2").Offset(0, lngNumVars * lngUnit - lngNumVars + i - 1).Copy

Worksheets(strUnitID).Activate

Worksheets(strUnitID).Cells(1, lngColPasteTo).Select

With Selection

.PasteSpecial xlPasteValues

End With

Worksheets("xferBN").Activate

If strNeedsFinishVal = "Y" Then

Set arrTransferArray = Worksheets("xferBN").Range("A2:A" & lngNumPeriods + 2)

.Offset(0, lngNumVars * lngUnit - lngNumVars + i - 1)

dblImputedLast = WorksheetFunction.Round(WorksheetFunction.Average(arrTransferArray), 0)

Cells(lngNumPeriods + 3, lngNumVars * lngUnit - lngNumVars + i) = dblImputedLast

Else

End If

For j = 1 To lngNumPeriods ’for each period (row) of data in the BDE/BN XFER sheet

If strIsCumulative = "Y" Then ’if the data is a cumulative total, divide by the number of periods

dblPeriodAvg = Worksheets("xferBN").Cells(j + 2, lngNumVars * lngUnit - lngNumVars + i).Value / lngMonthsPerPd

dblPeriodAvgNext = Worksheets("xferBN").Cells(j + 3, lngNumVars * lngUnit - lngNumVars + i).Value / lngMonthsPerPd

Else ’if the data is not cumulative, use the given value as the point estimate

dblPeriodAvg = Worksheets("xferBN").Cells(j + 2, lngNumVars * lngUnit - lngNumVars + i).Value

dblPeriodAvgNext = Worksheets("xferBN").Cells(j + 3, lngNumVars * lngUnit - lngNumVars + i).Value

End If

dblRange = dblPeriodAvgNext - dblPeriodAvg

dblRangeStep = dblRange / lngMonthsPerPd

dblStdDev = Abs(dblRange / 4) ’assumes +/-2sigma per empirical rule

Worksheets(strUnitID).Activate

For k = 1 To lngMonthsPerPd ’for each month in each year, generate a random error about the trend line

dblStdError = WorksheetFunction.NormSInv(Rnd) * dblStdDev / (lngMonthsPerPd ^ 0.5)

If strTypeData = "Decimal" Then ’if decimal, don’t round

Worksheets(strUnitID).Cells(1 + j * lngMonthsPerPd - lngMonthsPerPd + k, lngColPasteTo).Value _

= dblPeriodAvg + ((k - 1) * dblRangeStep) + dblStdError

Else ’ it is integer

Worksheets(strUnitID).Cells(1 + j * lngMonthsPerPd - lngMonthsPerPd + k, lngColPasteTo).Value _

= WorksheetFunction.Round(dblPeriodAvg + ((k - 1) * dblRangeStep) + dblStdError, 0)

End If

Next k

Next j

Next i

Call ProtectSheet

Next lngUnit

Application.ScreenUpdating = True

End Sub

130



E.3 Principal Components Analysis (MATLAB®2014)

function [EIGVALS_R,EIGVAL_Percent_Var,EIGVAL_CumPercent_Var,L] = mvapca(X,Categories)

%This function completes a Principal Component Analysis on a matrix of any

%size using the correlation matrix.

% INPUTS:

% 1. X, the data to be analyzed with N observations and p variables

% 2. Categories, an N x 1 vector of up to 11 integer categories

% OUTPUTS:

% 1. A vector of eigenvalues

% 2. A vector of the percent of variance explained by each eigenvalue

% 3. A vector of cumulative percents from (2)

% 4. A plot of Horn’s Test (actual data v. Horn’s curve)

% 5. A subplot of all RETAINED component scores against each other

%Created by: Joshua McDonald | AFIT Dept. of Operational Sciences | 4/17/15

%*****************************************BEGIN MAIN SCRIPT*************************************

%***********************************************************************************************

[obs,~] = size(X);

[X_S,~,R] = mvastandard(X); %standardize data & output the correlation matrix R

[~,variables] = size(R);

[A_R,EIGVALS_R] = eig(R); %get normalized eigenvectors and values

EIGVALS_R = diag(EIGVALS_R,0)’; %put eigenvalues in a row vector for sorting in decreasing order

for i = 1:(variables-1);

[~,index] = max(EIGVALS_R(1,i:variables));

% Swap Values

moved_val = EIGVALS_R(:,i);

EIGVALS_R(:,i) = EIGVALS_R(:,i-1+index);

EIGVALS_R(:,i-1+index) = moved_val;%<-- Sorted Eigenvalues

% Swap Vectors

moved_vec = A_R(:,i);

A_R(:,i) = A_R(:,i-1+index);

A_R(:,i-1+index) = moved_vec;

end

for i = 1:size(EIGVALS_R,2) %get the percent of variance provided by each eigenvalue

EIGVAL_Percent_Var(1,i) = EIGVALS_R(1,i)/sum(EIGVALS_R);%<-- Eigenvalue percent variance

end

EIGVAL_CumPercent_Var = cumsum(EIGVAL_Percent_Var) %<-- Cumulative Eigenvalue variance

Y_R = X_S*A_R; %<-- Component Scores (N x p)

L = corr(X_S,Y_R); %<-- Loadings Matrix (p x p)

%*****************************HORN’S CURVE************************************

for i = 1:length(L); %make a vector of component column indices for x-axis

components(1,i) = i;

end

[curvepoints] = Hornscurve(obs,length(L)); %construct Horn’s Curve eigenvalues

function [curvepoints] = Hornscurve(N,p)

%This function takes as INPUTS a number of observations N, and a number of variables p. It creates

%K=1000 random, NID matricies of size (N x p) and extracts eigenvalues from the Covariance of the

%matrix. After K rows of p eigenvalues are recorded, the average of the p columns is recorded in a

%1 x p vector, which are the points forming Horn’s curve.

%*****************Created by: Joshua McDonald | AFIT Dept. of Operational Sciences | 5/5/15

K = 1000;

Eigvals_master = zeros(K,p);

for i = 1:K

M = randn(N,p);

C = cov(M);

[~,Eigvals_C] = eig(C); %get normalized eigenvectors and values

Eigvals_C = diag(Eigvals_C,0)’; %put eigenvalues in a row vector

for j = 1:p-1; % Sort the eignenvalues from largest to smallest

[~,index] = max(Eigvals_C(1,j:p));

moved_val = Eigvals_C(:,j);

Eigvals_C(:,j) = Eigvals_C(:,j-1+index);

Eigvals_C(:,j-1+index) = moved_val;

end

Eigvals_master(i,:) = Eigvals_C(1,:);

end

curvepoints = mean(Eigvals_master);

%***********************************************************************************************

%*******************************************END MAIN********************************************
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E.4 Durbin-Watson Statistics for Categorical Variables (MATLAB®2014)

function [D] = mcdonaldDW(E);

%INPUTS -> E, a T x m matrix of residuals obtained from OLS regression

% where T (indexed by t) is the number of time observations in each of m

% columns (indeixed by i)

%OUTPUTS -> D, a m x 1 vector of Durbin-Watson test statistics

%*****************************Created by: J. McDonald, AFIT | 10/17/15

[T,m] = size(E);

e = E;

esumsqr = zeros(1,m);

esqrdiff = zeros(T-1,m);

esumsqrdiffs = zeros(1,m);

D = zeros(1,m);

for i = 1:m

esumsqr(1,i) = sumsqr(e(:,i));

for t = 2:T

esqrdiff(t,i) = (e(t,i)-e(t-1,i))^2;

end

esumsqrdiffs(1,i) = sum(esqrdiff(:,i));

D(1,i) = esumsqrdiffs(1,i)/esumsqr(1,i);

end

D = D’;

%**********************************END MAIN**********************************
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Appendix F. Final Battalion Regression Models

Table F.1. Battalion-echelon Models for Graduate Alpha (k = GA) Contracts

i β
(k,i)
0 β

(k,i)
4 β

(k,i)
30 β

(k,i)
31 β

(k,i)
32 β

(k,i)
33 φ

(k,i)
t−1

BN 1A 6.0013 26.4225 −4.2724 0.0245 -2.0811 1.06× 10−5 0.0028
BN 1B 3.1563 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 −0.0010
BN 1D 3.5834 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 −0.0029
BN 1E 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0020
BN 1G 6.5452 26.4225 −7.4793 0.0245 -2.0811 1.06× 10−5 0.0103
BN 1K 4.7563 26.4225 0.8758 0.0245 -2.0811 −1.85× 10−5 −0.0008
BN 1N 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0069
BN 1O 4.2881 26.4225 0.8758 0.0245 -2.0811 −3.13× 10−5 0.0108
BN 3A 5.6542 26.4225 −3.0809 0.0245 -2.0811 1.06× 10−5 −0.0031
BN 3D 3.9949 26.4225 0.8758 0.0245 -2.0811 −3.23× 10−5 0.0070
BN 3E −1.9996 72.9264 0.8758 0.0245 -2.0811 1.06× 10−5 0.0020
BN 3G 0.8969 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0106
BN 3H 0.8771 26.4225 0.8758 0.0245 2.9382 1.06× 10−5 0.0046
BN 3J 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0058
BN 3N 0.4258 47.3275 0.8758 0.0245 -2.0811 1.06× 10−5 0.0043
BN 3T 0.3884 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0199
BN 4C 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0069
BN 4D 1.5753 26.4225 0.8758 0.0358 -2.0811 1.06× 10−5 0.0021
BN 4E 3.3289 26.4225 0.8758 0.0245 -2.0811 −6.42× 10−6 0.0060
BN 4G 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0087
BN 4J 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0074
BN 4K −1.0958 60.5243 0.8758 0.0245 -2.0811 1.06× 10−5 0.0128
BN 4P 2.6972 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0023
BN 5A 1.3459 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0094
BN 5C 4.1218 4.2068 0.8758 0.0245 -2.0811 1.06× 10−5 0.0022
BN 5D 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0045
BN 5H 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0060
BN 5I −0.0926 41.0251 0.8758 0.0245 -2.0811 1.06× 10−5 0.0069
BN 5J 1.4253 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0151
BN 5K 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0104
BN 5N* 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0058
BN 6F 4.9470 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 −0.0054
BN 6H 2.1978 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0078
BN 6I 3.7050 26.4225 0.8758 0.0245 -2.0811 −7.31× 10−6 −0.0056
BN 6J 1.1932 26.4225 0.8758 0.0437 -2.0811 1.06× 10−5 −0.0005
BN 6K 3.7902 26.4225 0.8758 0.0245 -2.0811 −1.02× 10−5 0.0079
BN 6L 2.4804 26.4225 0.8758 0.0245 -2.0811 1.06× 10−5 0.0089
BN 6N 3.4910 26.4225 −3.7986 0.0245 -2.0811 −1.73× 10−5 0.0034

*Baseline
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Table F.2. Battalion-echelon Models for Other (k = OTH) Contracts

i β̂
(k,i)
0 β̂

(k,i)
4 β̂

(k,i)
30 β̂

(k,i)
31 β̂

(k,i)
32 β̂

(k,i)
33 φ̂

(k,i)
t−1

BN 1A 3.7519 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0040
BN 1B 4.8331 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0009
BN 1D 3.3435 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0146
BN 1E 3.0128 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0185
BN 1G 4.8331 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0039
BN 1K 5.7101 15.2018 -0.9503 0.0200 -0.2294 −2.26× 10−5 0.0146
BN 1N 3.7381 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0040
BN 1O 4.4737 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0193
BN 3A 4.9531 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0056
BN 3D 5.6615 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0008
BN 3E −0.5804 63.6241 -0.9503 0.0200 -0.2294 3.68× 10−5 0.0069
BN 3G 8.3778 15.2018 -0.9503 0.0200 -0.2294 −4.67× 10−5 −0.0015
BN 3H 4.2080 15.2018 -0.9503 0.0200 3.1698 4.82× 10−6 0.0080
BN 3J 4.6361 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0099
BN 3N −0.0017 39.9493 -0.9503 0.0200 -0.2294 4.95× 10−5 0.0016
BN 3T 8.0054 15.2018 -4.3841 0.0200 -0.2294 4.82× 10−6 0.0029
BN 4C 4.3254 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0066
BN 4D 3.4651 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0146
BN 4E 4.8331 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0006
BN 4G 3.5428 15.2018 -0.9503 0.0298 -0.2294 4.82× 10−6 −0.0004
BN 4J 4.7788 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0079
BN 4K 0.5943 64.6082 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0086
BN 4P 2.7029 50.8070 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0055
BN 5A 3.4791 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0074
BN 5C 4.2807 15.2018 -0.9503 0.0211 -0.2294 4.82× 10−6 −0.0078
BN 5D 4.0023 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0060
BN 5H 6.4252 15.2018 -0.9503 0.0114 -0.2294 4.82× 10−6 −0.0157
BN 5I 4.4255 15.2018 -0.9503 0.0200 -6.0886 4.82× 10−6 0.0079
BN 5J 3.2492 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0115
BN 5K 3.3761 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0106
BN 5N* 4.8331 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 −0.0015
BN 6F 4.3130 15.2018 -0.9503 0.0200 -0.2294 −1.71× 10−5 0.0225
BN 6H 4.2229 15.2018 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0163
BN 6I 4.8073 15.2018 -0.9503 0.0129 -0.2294 4.82× 10−6 0.0044
BN 6J 0.9208 40.7777 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0190
BN 6K −0.6777 50.6793 -0.9503 0.0200 -0.2294 4.82× 10−6 0.0185
BN 6L 4.0834 15.2018 -0.9503 0.0200 -4.1426 4.82× 10−6 0.0160
BN 6N −0.0084 61.7380 -0.9503 0.0200 -0.2294 −7.84× 10−6 0.0059

*Baseline
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Table F.3. Battalion-echelon Models for Other (k = SA) Contracts

QTR 1* QTR 2 QTR 3 QTR 4
β̂
(k,i)
4 β̂

(k,i)
30 β̂

(k,i)
31 β̂

(k,i)
33

φ̂
(k,i)
t−1

i β̂
(k,i)
0 β̂

(k,i)
0 β̂

(k,i)
0 β̂

(k,i)
0

BN 1A 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0051

BN 1B -2.1747 -1.8306 -1.3374 -2.5265 -12.7345 7.3834 0.0107 1.47× 10−6 0.0155

BN 1D 2.9588 3.3029 3.7961 2.6070 -12.7345 0.5186 0.0107 1.47× 10−6 0.0335

BN 1E 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0004

BN 1G 1.8122 2.1564 2.2980 1.4604 -12.7345 0.5186 0.0107 1.47× 10−6 0.0314

BN 1K 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 8.82× 10−6 0.0314

BN 1N 3.6116 3.9557 3.5476 3.8873 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0053

BN 1O -2.2302 -1.2794 -1.3929 -2.5820 -12.7345 6.8295 0.0107 1.47× 10−6 0.0185

BN 3A 9.5942 9.9383 10.4315 9.2424 -69.8499 0.5186 0.0107 1.47× 10−6 -0.0159

BN 3D -1.6317 -1.2875 -0.7943 -1.9835 -12.7345 0.5186 0.0107 1.30× 10−4 -0.0065

BN 3E 0.6327 0.9769 1.4701 0.2809 -12.7345 5.3432 0.0107 1.47× 10−6 0.0126

BN 3G 3.7872 4.1313 4.6245 3.4354 -12.7345 0.5186 0.0023 1.47× 10−6 0.0179

BN 3H 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0021

BN 3J 6.9493 7.2935 7.7866 6.5975 -44.7603 0.5186 0.0107 1.47× 10−6 0.0015

BN 3N 1.9630 2.3071 2.8003 0.9800 -12.7345 4.6567 0.0107 1.47× 10−6 0.0032

BN 3T 3.4437 3.7878 4.2810 3.0919 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0221

BN 4C 8.1182 8.4624 8.9555 7.7664 -12.7345 -4.5569 0.0107 1.47× 10−6 -0.0141

BN 4D 6.8775 7.2216 7.7148 6.5257 -49.2110 0.5186 0.0107 1.47× 10−6 -0.0095

BN 4E 3.4288 3.7730 4.2662 2.5276 -12.7345 0.5186 0.0107 1.47× 10−6 0.0082

BN 4G 3.7728 4.1170 4.6102 3.4210 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0131

BN 4J 3.6719 3.4995 4.5093 3.3201 -12.7345 0.5186 0.0107 1.47× 10−6 0.0076

BN 4K 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0037

BN 4P 6.3981 6.2528 7.2354 6.0463 -25.3920 0.5186 0.0107 1.47× 10−6 -0.0248

BN 5A 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0126

BN 5C 5.6229 5.9670 6.4602 5.2711 -12.7345 -2.6684 0.0107 1.47× 10−6 0.0042

BN 5D 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0052

BN 5H 2.9113 3.2555 3.7487 2.5595 -12.7345 0.5186 0.0192 1.47× 10−6 0.0128

BN 5I 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0008

BN 5J 6.2880 6.6322 7.1253 5.9362 -12.7345 -3.0345 0.0107 1.47× 10−6 0.0180

BN 5K 3.0773 3.0012 3.9147 2.7255 -12.7345 0.5186 0.0107 1.35× 10−5 0.0042

BN 5N* 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 0.0030

BN 6F 3.2325 3.5766 4.0698 2.8806 -12.7345 0.5186 0.0107 1.47× 10−6 -0.0046

BN 6H 3.6321 3.9763 4.4695 3.2803 -12.7345 0.5186 0.0107 −1.01× 10−5 0.0137

BN 6I 3.5007 3.8449 4.3380 3.1489 -12.7345 0.5186 0.0160 1.47× 10−6 0.0061

BN 6J 0.2422 0.5864 1.0795 -0.1096 26.5042 0.5186 0.0107 1.47× 10−6 0.0145

BN 6K 3.6321 3.9763 4.4695 3.2803 -12.7345 2.6420 0.0107 −1.01× 10−5 0.0145

BN 6L 3.5736 3.9177 4.4109 3.2218 -12.7345 0.5186 0.0107 1.47× 10−6 0.0209

BN 6N 2.6417 2.9858 3.4790 2.2899 15.0886 0.5186 0.0107 −2.53× 10−5 -0.0131

*Baseline
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Appendix G. Quad Chart
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